Abstract
The notion of “efficiently testable circuits” (ETC) was recently put forward by Baig et al. (ITCS’23). Informally, an ETC compiler takes as input any Boolean circuit C and outputs a circuit/inputs tuple \((C',\mathbb {T})\) where (completeness) \(C'\) is functionally equivalent to C and (security) if \(C'\) is tampered in some restricted way, then this can be detected as \(C'\) will err on at least one input in the small test set \(\mathbb {T}\). The compiler of Baig et al. detects tampering even if the adversary can tamper with all wires in the compiled circuit. Unfortunately, the model requires a strong “conductivity” restriction: the compiled circuit has gates with fan-out up to 3, but wires can only be tampered in one way even if they have fan-out greater than one. In this paper, we solve the main open question from their work and construct an ETC compiler without this conductivity restriction. While Baig et al. use gadgets computing the AND and OR of particular subsets of the wires, our compiler computes inner products with random vectors. We slightly relax their security notion and only require that tampering is detected with high probability over the choice of the randomness. Our compiler increases the size of the circuit by only a small constant factor. For a parameter \(\lambda \) (think \(\lambda \le 5\)), the number of additional input and output wires is \(|C|^{1/\lambda }\), while the number of test queries to detect an error with constant probability is around \(2^{2\lambda }\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The conductivity assumption for the PC compiler from [24] is slightly stronger than ours, as they additionally assume that “faults on the output side of a NOT gate propagate to the input side”.
- 2.
Ensuring non-conductivity by making sure the fan-out is 1 is done for clarity of exposition. To get a fan-out 1 circuit our complied circuit requires numerous \(\textsf{COPY}\) gates. In an actual physical circuit any of those \(\textsf{COPY}\) gates can be simply removed by increasing the fan-out of the input wire to that gate by one.
References
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.), Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31–June 03, 2014, pp. 774–783. ACM (2014). https://doi.org/10.1145/2591796.2591804
Ateniese, G., Kiayias, A., Magri, B., Tselekounis, Y., Venturi, D.: Secure outsourcing of cryptographic circuits manufacturing. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 75–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_5
Baig, M.A., Chakraborty, S., Dziembowski, S., Gałczka, M., Lizurej, T., Pietrzak, K.: Efficiently testable circuits. In: ITCS - Innovations in Theoretical Computer Science (2023)
Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable codes for small-depth circuits. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7–9, 2018, pages 826–837. IEEE Computer Society, 2018. https://doi.org/10.1109/FOCS.2018.00083
Berti, F., Guo, C., Peters, T., Standaert, F.-X.: Efficient leakage-resilient MACs without idealized assumptions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 95–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_4
Bhunia, S., Tehranipoor, M.: The Hardware Trojan War. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68511-3
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)
Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. J. Cryptol. 26(3), 513–558 (2012). https://doi.org/10.1007/s00145-012-9136-3
Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory and Mixed-signal VLSI Circuits, vol. 17. Springer Science & Business Media, Cham (2004). https://doi.org/10.1007/b117406
Chakraborty, S., Dziembowski, S., Gałązka, M., Lizurej, T., Pietrzak, K., Yeo, M.: Trojan-resilience without cryptography. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 397–428. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_14
Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V., (eds.), Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19–23, 2017, pp. 1171–1184. ACM (2017). https://doi.org/10.1145/3055399.3055483
Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 533–551. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_31
Dachman-Soled, D., Kalai, Y.T.: Securing circuits and protocols against 1/poly(k) tampering rate. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 540–565. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_23
Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. J. Cryptol. 33(1), 319–355 (2018). https://doi.org/10.1007/s00145-018-9306-z
Dziembowski, S., Faust, S., Standaert, F.-X.: Private circuits III: hardware trojan-resilience via testing amplification. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., (eds.), ACM CCS, pp. 142–153. ACM (2016). https://doi.org/10.1145/2976749.2978419
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25–28, 2008, Philadelphia, PA, USA, pp. 293–302. IEEE Computer Society (2008). https://doi.org/10.1109/FOCS.2008.56
Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4), 20:1-20:32 (2018). https://doi.org/10.1145/3178432
Efremenko, K., et al.: Circuits resilient to short-circuit errors. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pp. 582–594. Association for Computing Machinery, New York, NY, USA (2022). ISBN 9781450392648. https://doi.org/10.1145/3519935.3520007
Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_21
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von Neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_26
Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: how to trade leakage for tamper-resilience, pp. 391–402 (2011). https://doi.org/10.1007/978-3-642-22006-7_33
Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 495–504. Association for Computing Machinery, New York, NY, USA (2014). ISBN 9781450327107. https://doi.org/10.1145/2591796.2591861
Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_19
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Kalai, Y.T., Lewko, A.B., Rao, A.: Formulas resilient to short-circuit errors. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20–23, 2012, pp. 490–499. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.69
Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In: Goldreich, O., (ed.) Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 727–794. ACM (2019). https://doi.org/10.1145/3335741.3335768
Kiayias, A., Tselekounis, Y.: Tamper resilient circuits: the adversary at the gates. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 161–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_9
Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.), Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19–23, 2017, pp. 1144–1156. ACM (2017). https://doi.org/10.1145/3055399.3055486
Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16
Wahby, R.S. Howald, M., Garg, S., Shelat, A., Walfish, M., Verifiable Asics. In: IEEE SP, pp. 759–778. IEEE Computer Society (2016). https://doi.org/10.1109/SP.2016.51
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Baig, M.A., Chakraborty, S., Dziembowski, S., Gałązka, M., Lizurej, T., Pietrzak, K. (2023). Efficiently Testable Circuits Without Conductivity. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14371. Springer, Cham. https://doi.org/10.1007/978-3-031-48621-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-48621-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48620-3
Online ISBN: 978-3-031-48621-0
eBook Packages: Computer ScienceComputer Science (R0)