Abstract
In the framework of Impagliazzo’s five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum information is taken into account. Recent work has shown that quantum variants of oblivious transfer and multi-party computation, both primitives that are classically in Cryptomania, can be constructed from one-way functions, placing them in the realm of quantum MiniCrypt (the so-called MiniQCrypt). This naturally raises the following question: Is it possible to construct a quantum variant of public-key encryption, which is at the heart of Cryptomania, from one-way functions or potentially weaker assumptions?
In this work, we initiate the formal study of the notion of quantum public-key encryption (qPKE), i.e., public-key encryption where keys are allowed to be quantum states. We propose new definitions of security and several constructions of qPKE based on the existence of one-way functions (OWF), or even weaker assumptions, such as pseudorandom function-like states (PRFS) and pseudorandom function-like states with proof of destruction (PRFSPD). Finally, to give a tight characterization of this primitive, we show that computational assumptions are necessary to build quantum public-key encryption. That is, we give a self-contained proof that no quantum public-key encryption scheme can provide information-theoretic security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout this paper, unless explicitly specified, by IND-CCA we refer to the notion of adaptive IND-CCA2 security.
- 2.
Note that PRS implies PRFS with logarithmic size inputs, but no such implication is known for super-logarithmic inputs.
- 3.
Meaning that one can only encrypt once using a
.
- 4.
Because of this stronger security definition, here the notion of public-keys with mixed states is meaningful since there is an alternative procedure to ensure that the key is well-formed (e.g., signing the classical component).
- 5.
This observation was pointed out to us by Takashi Yamakawa.
- 6.
This is due to \(\varPi ^1_\textsf{dk} \) operators being rank-1 projections.
References
Aaronson, S.: Shadow tomography of quantum states. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 325–338. ACM Press (2018). https://doi.org/10.1145/3188745.3188802
Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_16
Ananth, P., Gulati, A., Qian, L., Yuen, H.: Pseudorandom (function-like) quantum state generators: New definitions and applications. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 237–265. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22318-1_9
Ananth, P., Qian, L., Yuen, H.: Cryptography from pseudorandom quantum states. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 208–236. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_8
Austrin, P., Chung, H., Chung, K.M., Fu, S., Lin, Y.T., Mahmoody, M.: On the impossibility of key agreements from quantum random oracles. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 165–194. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_6
Barhoush, M., Salvail, L.: How to sign quantum messages. arXiv preprint arXiv:2304.06325 (2023)
Barooti, K., et al.: Public-key encryption with quantum keys. Cryptology ePrint Archive, Paper 2023/877 (2023). https://eprint.iacr.org/2023/877
Barooti, K., Malavolta, G., Walter, M.: A simple construction of quantum public-key encryption from quantum-secure one-way functions. Cryptology ePrint Archive, Paper 2023/306 (2023). https://eprint.iacr.org/2023/306
Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: One-way functions imply secure computation in a quantum world. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 467–496. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_17
Behera, A., Brakerski, Z., Sattath, O., Shmueli, O.: Pseudorandomness with proof of destruction and applications. Cryptology ePrint Archive, Paper 2023/543 (2023). https://eprint.iacr.org/2023/543
Bennett, C.H., Brassard, G.: An update on quantum cryptography (impromptu talk). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 475–480. Springer, Heidelberg (1984)
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35
Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21
Chevalier, C., Ebrahimi, E., Vu, Q.H.: On security notions for encryption in a quantum world. In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptology - INDOCRYPT 2022–23rd International Conference on Cryptology in India, Kolkata, India, 11–14 December 2022, Proceedings. Lecture Notes in Computer Science, vol. 13774, pp. 592–613. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22912-1_26
Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of non-malleable encryption from semantically secure encryption. J. Cryptol. 31(1), 172–201 (2018). https://doi.org/10.1007/s00145-017-9254-z
Coladangelo, A.: Quantum trapdoor functions from classical one-way functions. Cryptology ePrint Archive, Paper 2023/282 (2023). https://eprint.iacr.org/2023/282
Doliskani, J.: Efficient quantum public-key encryption from learning with errors. Cryptology ePrint Archive, Paper 2020/1557 (2020). https://eprint.iacr.org/2020/1557
Gottesman, D.: Quantum public key cryptography with information-theoretic security (2005). https://www2.perimeterinstitute.ca/personal/dgottesman/Public-key.ppt
Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is in MiniQCrypt. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 531–561. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_18
Grilo, A.B., Sattath, O., Vu, Q.H.: Encryption with quantum public keys. Cryptology ePrint Archive, Paper 2023/345 (2023). https://eprint.iacr.org/2023/345
Huang, H.Y., Kueng, R., Preskill, J.: Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16(10), 1050–1057 (2020)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2
Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5
Kawachi, A., Koshiba, T., Nishimura, H., Yamakami, T.: Computational indistinguishability between quantum states and its cryptographic application. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 268–284. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_16
Kitagawa, F., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum public-key encryption with tamper-resilient public keys from one-way functions. Cryptology ePrint Archive, Paper 2023/490 (2023). https://eprint.iacr.org/2023/490
Kretschmer, W.: Quantum pseudorandomness and classical complexity. In: Hsieh, M. (ed.) 16th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2021, 5–8 July 2021, Virtual Conference. LIPIcs, vol. 197, pp. 2:1–2:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.TQC.2021.2
Kretschmer, W., Qian, L., Sinha, M., Tal, A.: Quantum cryptography in algorithmica. arXiv preprint arXiv:2212.00879 (2022)
Malavolta, G., Walter, M.: Non-interactive quantum key distribution. Cryptology ePrint Archive, Paper 2023/500 (2023). https://eprint.iacr.org/2023/500
Morimae, T., Yamakawa, T.: One-wayness in quantum cryptography. Cryptology ePrint Archive, Paper 2022/1336 (2022). https://eprint.iacr.org/2022/1336
Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 269–295. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_10
Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616. IEEE Computer Society Press (2009). https://doi.org/10.1109/FOCS.2009.65
Nikolopoulos, G.M., Ioannou, L.M.: Deterministic quantum-public-key encryption: forward search attack and randomization. Phys. Rev. A 79, 042327 (2009). https://doi.org/10.1103/PhysRevA.79.042327
Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum public-key cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 147–165. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_9
Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). https://doi.org/10.1145/1008908.1008920
Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp. 679–687. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.37
Acknowledgments
The authors wish to thank Prabhanjan Ananth and Umesh Vazirani for related discussions, and Takashi Yamakawa for pointing out a simple argument to rule out the existence of information-theoretically secure qPKE. The argument is replicated here with his permission.
ABG and QHV are supported by ANR JCJC TCS-NISQ ANR-22-CE47-0004, and by the PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030. GM was partially funded by the German Federal Ministry of Education and Research (BMBF) in the course of the 6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. OS was supported by the Israeli Science Foundation (ISF) grant No. 682/18 and 2137/19, and by the Cyber Security Research Center at Ben-Gurion University. KB and LH were supported by the Swiss National Science Foundation (SNSF) through the project grant 192364 on Post Quantum Cryptography. OS has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 756482). MW acknowledges support by the the European Union (ERC, SYMOPTIC, 101040907), by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, by the BMBF through project QuBRA, and by the Dutch Research Council (NWO grant OCENW.KLEIN.267). Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Barooti, K. et al. (2023). Public-Key Encryption with Quantum Keys. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14372. Springer, Cham. https://doi.org/10.1007/978-3-031-48624-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-48624-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48623-4
Online ISBN: 978-3-031-48624-1
eBook Packages: Computer ScienceComputer Science (R0)