Skip to main content

Non-invasive Synthesis from Vision Sensors for the Generation of 3D Body Landmarks, Locations and Identification in Smart Environments

  • Conference paper
  • First Online:
Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023) (UCAmI 2023)

Abstract

This work proposes 3D body landmarks, location, and identification in multioccupancy contexts from vision sensors. Methods include high-performance vision tools, such as Yolo, DeepFace, and MediaPipe, to estimate 3D body landmarks and identification. First, we sense a smart space where a vision sensor is deployed to collect the activities of inhabitants. Our proposed model computes, identifies, tracks and obtains 3D body landmarks in multi-occupancy contexts. Third, 2D location over the floor is estimated based on homography projection, enabling fusing multiple vision sensors’ information. Third, tracking and face recognition are integrated with non-supervised tracking to identify the inhabitants in the smart environment and relate the landmarks to them. A case study is presented to illustrate the proposal with an encouraging performance (f1-score: 0.98) in tracking multi-occupancy of two inhabitants with five scenes in two rooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, J., Delgado, M., Medina, J., Ruiz-Lozano, M.: An expert fuzzy system for predicting object collisions: its application for avoiding pedestrian accidents. Expert Syst. Appl. 38(1), 486–494 (2011)

    Article  Google Scholar 

  2. Castro, L.A., Bravo, J.: Modeling interactions in ambient intelligence. Pers. Ubiq. Comput. 26(6), 1333–1335 (2022)

    Article  Google Scholar 

  3. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: Yolo-face: a real-time face detector. Vis. Comput. 37, 805–813 (2021)

    Article  Google Scholar 

  4. Cheng, S., Sun, J.X., Cao, Y.G., Zhao, L.R., et al.: Target tracking based on incremental deep learning (2015)

    Google Scholar 

  5. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

    Chapter  Google Scholar 

  6. Gopinath, V., Srija, A., Sravanthi, C.N.: Re-design of smart homes with digital twins. In: Journal of Physics: Conference Series, vol. 1228, p. 012031. IOP Publishing (2019)

    Google Scholar 

  7. Jian, S., Kaiming, H., Shaoqing, R., Xiangyu, Z.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)

    Article  Google Scholar 

  9. Jiang, T., Zhang, Q., Yuan, J., Wang, C., Li, C.: Multi-type object tracking based on residual neural network model. Symmetry 14(8), 1689 (2022)

    Article  Google Scholar 

  10. Kim, J.W., Choi, J.Y., Ha, E.J., Choi, J.H.: Human pose estimation using mediapipe pose and optimization method based on a humanoid model. Appl. Sci. 13(4), 2700 (2023)

    Article  Google Scholar 

  11. Lin, Y., Jiao, X., Zhao, L.: Detection of 3d human posture based on improved mediapipe. J. Comput. Commun. 11(2), 102–121 (2023)

    Article  Google Scholar 

  12. Liu, P.L., Chang, C.C.: Simple method integrating openpose and rgb-d camera for identifying 3d body landmark locations in various postures. Int. J. Ind. Ergon. 91, 103354 (2022)

    Article  Google Scholar 

  13. Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: a survey. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 471–478. IEEE (2018)

    Google Scholar 

  14. Nikolakis, N., Alexopoulos, K., Xanthakis, E., Chryssolouris, G.: The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. Int. J. Comput. Integr. Manuf. 32(1), 1–12 (2019)

    Article  Google Scholar 

  15. Parkhi, O., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC 2015-Proceedings of the British Machine Vision Conference 2015. British Machine Vision Association (2015)

    Google Scholar 

  16. Pereira, A., Carvalho, P., Pereira, N., Viana, P., Côrte-Real, L.: From a visual scene to a virtual representation: a cross-domain review. IEEE Access 11, 57916–57933 (2023)

    Article  Google Scholar 

  17. Saraee, E., Jalal, M., Betke, M.: Visual complexity analysis using deep intermediate-layer features. Comput. Vis. Image Underst. 195, 102949 (2020)

    Article  Google Scholar 

  18. Serengil, S.: Deepface (2020). https://github.com/serengil/deepface

  19. Singh, A.K., Kumbhare, V.A., Arthi, K.: Real-time human pose detection and recognition using mediapipe. In: eddy, V.S., Prasad, V.K., Wang, J., Reddy, K. (eds.) International Conference on Soft Computing and Signal Processing, vol. 1413, pp. 145–154. Springer, Heidelberg (2021). https://doi.org/10.1007/978-981-16-7088-6_12

  20. Song, L., Yu, G., Yuan, J., Liu, Z.: Human pose estimation and its application to action recognition: a survey. J. Vis. Commun. Image Represent. 76, 103055 (2021)

    Article  Google Scholar 

  21. Tian, Y., Zhang, H., Liu, Y., Wang, L.: Recovering 3D human mesh from monocular images: a survey. arXiv preprint arXiv:2203.01923 (2022)

  22. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

    Google Scholar 

  23. Yang, F., Zhang, X., Liu, B.: Video object tracking based on yolov7 and deepsort. arXiv preprint arXiv:2207.12202 (2022)

  24. Zago, M., Luzzago, M., Marangoni, T., De Cecco, M., Tarabini, M., Galli, M.: 3d tracking of human motion using visual skeletonization and stereoscopic vision. Front. Bioeng. Biotechnol. 8, 181 (2020)

    Article  Google Scholar 

  25. Zhu, C.: Video object tracking using sift and mean shift (2011)

    Google Scholar 

Download references

Acknowledgements

This contribution has been supported by the Spanish Institute of Health ISCIII through the project DTS21-00047. Moreover, this research has received funding by EU Horizon 2020 Pharaon Project ‘Pilots for Healthy and Active Ageing’, Grant agreement no. 857188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Medina-Quero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polo-Rodriguez, A., Burns, M., Nugent, C., Florez-Revuelta, F., Medina-Quero, J. (2023). Non-invasive Synthesis from Vision Sensors for the Generation of 3D Body Landmarks, Locations and Identification in Smart Environments. In: Bravo, J., Urzáiz, G. (eds) Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023). UCAmI 2023. Lecture Notes in Networks and Systems, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-031-48642-5_6

Download citation

Publish with us

Policies and ethics