Skip to main content

ADLnet: A 1d-CNN for Activity of Daily Living Recognition in Smart Homes

  • Conference paper
  • First Online:
Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023) (UCAmI 2023)

Abstract

Human activity recognition (HAR) systems enable continuous monitoring of human behaviours in several areas, including activity of daily living (ADL) detection in ambient intelligent environments. The extraction of relevant features is the most challenging part of sensor-based HAR. Feature extraction influences algorithm performance and reduces computation time and complexity. However, the majority of current HAR systems rely on handcrafted features that are incapable of handling complex activities, especially with the influx of multimodal and high-dimensional sensor data. Over the last few decades, Deep Learning has been considered to be one of the most powerful tools to handle huge amounts of data. Thus, we developed ADLnet, a One-Dimensional Convolutional Neural Network (1d-CNN) for recognizing ADLs in Smart Homes, as part of an ambient assisted living framework to provide assistance to elderly inhabitants. We propose an innovative method to scan and classify time-series sensor data such as the CASAS dataset, which has been used for the training/validation/testing process. Testing results show very high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations. Global issues: Ageing. https://www.un.org/en/global-issues/ageing

  2. World Health Organization, fact sheets: Falls. https://www.who.int/news-room/fact-sheets/detail/falls

  3. Azefack, C., et al.: An approach for behavioral drift detection in a smart home. In: IEEE 15th International Conference on Automation Science and Engineering (CASE), vol. 2019, pp. 727–732 (2019)

    Google Scholar 

  4. Lowe, S.A., ÓLaighin, G.: Monitoring human health behaviour in one’s living environment: a technological review. Med. Eng. Phys. 36(2), 147–168 (2014)

    Google Scholar 

  5. Steele, R., Lo, A., Secombe, C., Wong, Y.K.: Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. Int. J. Med. Inf. 78(12), 788–801 (2009)

    Article  Google Scholar 

  6. Alshammari, T., Alshammari, N., Sedky, M., Howard, C.: Evaluating machine learning techniques for activity classification in smart home environments. Int. J. Inf. Syst. Comput. Sci. 12, 48–54 (2018)

    Google Scholar 

  7. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: International Conference on engineering and Technology (ICeT), vol. 2017, pp. 1–6 (2017)

    Google Scholar 

  8. Bouchabou, D., Nguyen, S.M., Lohr, C., LeDuc, B., Kanellos, I.: A survey of human activity recognition in smart homes based on IoT sensors algorithms: taxonomies, challenges, and opportunities with deep learning. Sensors 21(18), 6037 (2021)

    Article  Google Scholar 

  9. Casas dataset. http://casas.wsu.edu/datasets/

  10. Singh, D., Merdivan, E., Hanke, S., Kropf, J., Geist, M., Holzinger, A.: Convolutional and recurrent neural networks for activity recognition in smart environment. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 194–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_12

    Chapter  Google Scholar 

  11. Ramasamy Ramamurthy, S., Roy, N.: Recent trends in machine learning for human activity recognition-a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8, e1254 (2018)

    Article  Google Scholar 

  12. Nweke, H.F., Teh, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Exp. Syst. Appl. 105, 233–261 (2018)

    Article  Google Scholar 

  13. Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables (2016)

    Google Scholar 

  14. Yang, J.-B., Nhut, N., San, P., Li, X., Shonali, P.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, July 2015

    Google Scholar 

  15. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  17. Richardson, F., Reynolds, D., Dehak, N.: Deep neural network approaches to speaker and language recognition. IEEE Sig. Process. Lett. 22(10), 1671–1675 (2015)

    Article  Google Scholar 

  18. Gamboa, J.C.B.: Deep learning for time-series analysis. CoRR, vol. abs/1701.01887 (2017)

    Google Scholar 

  19. Sadouk, L.: CNN approaches for time series classification, chap. 4. In: Ngan, C.-K. (ed.) Time Series Analysis, IntechOpen 2019, Rijeka (2019)

    Google Scholar 

  20. Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1488–1492 (2015)

    Google Scholar 

  21. Zeng, M., et al.: Convolutional neural networks for human activity recognition using mobile sensors. In: 6th International Conference on Mobile Computing, Applications and Services, pp. 197–205 (2014)

    Google Scholar 

  22. Wang, Z., Oates, T.: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, January 2015

    Google Scholar 

  23. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification (2016)

    Google Scholar 

  24. Wang, W., Chen, C., Wang, W., Rai, P., Carin, L.: Earliness-aware deep convolutional networks for early time series classification (2016)

    Google Scholar 

  25. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline (2016)

    Google Scholar 

  26. Hamad, R.A., Yang, L., Woo, W.L., Wei, B.: Joint learning of temporal models to handle imbalanced data for human activity recognition. Appl. Sci. 10(15), 5293 (2020)

    Article  Google Scholar 

  27. Alghamdi, S., Fadel, E., Alowidi, N.: Recognizing activities of daily living using 1D convolutional neural networks for efficient smart homes. Int. J. Adv. Comput. Sci. Appl. 12(1), 1–11 (2021)

    Google Scholar 

  28. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Human activity recognition from wireless sensor network data: benchmark and software. In: Chen, L., Nugent, C., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4, pp. 165–186. Atlantis Press (2011). https://doi.org/10.2991/978-94-91216-05-3_8

  29. Morales, F., De Toledo, P., de Miguel, A.S.: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors (Basel, Switzerland) 13, 5460–5477 (2013)

    Article  Google Scholar 

  30. Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N.: ContextAct at A4H dataset, June 2017

    Google Scholar 

  31. University of Mannheim - HAR Dataset. https://sensor.informatik.uni-mannheim.de/

  32. Taylor, L., Nitschke, G.: Improving deep learning with generic data augmentation. In: IEEE Symposium Series on Computational Intelligence (SSCI), vol. 2018, pp. 1542–1547 (2018)

    Google Scholar 

  33. Wen, Q., et al.: Time series data augmentation for deep learning: a survey. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, August 2021

    Google Scholar 

  34. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 16(7), 1–32 (2021)

    Article  Google Scholar 

  35. Abadi, M., Agarwal, A., et al.: TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/

  36. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  37. Bjorck, J., Gomes, C., Selman, B., Weinberger, K.Q.: Understanding batch normalization (2018)

    Google Scholar 

  38. Keras activation functions. https://keras.io/api/layers/activations/

  39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Keras loss functions. https://keras.io/api/losses/probabilistic_losses/categoricalcrossentropy-class

  41. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  42. di Blasio, G., Venturelli, M.: ADLnet (2021). https://github.com/GDB-MV/ADLnet

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Comai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salice, F., Masciadri, A., Di Blasio, G., Venturelli, M., Comai, S. (2023). ADLnet: A 1d-CNN for Activity of Daily Living Recognition in Smart Homes. In: Bravo, J., Urzáiz, G. (eds) Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023). UCAmI 2023. Lecture Notes in Networks and Systems, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-031-48642-5_8

Download citation

Publish with us

Policies and ethics