Skip to main content

Impact of Setpoint Control on Indoor Greenhouse Climate Modeling

  • Conference paper
  • First Online:
Energy Informatics (EI.A 2023)

Abstract

Greenhouse agriculture is a crucial solution to global food security and sustainability challenges, as it provides a controlled environment for plant growth, resulting in higher yields and efficient resource utilization. Climate control plays a critical role in determining energy consumption and plant growth within greenhouse systems. The selection and optimization of control parameters have a significant impact on the overall performance. This study conducted simulations of a tomato greenhouse located in Montreal, Canada, with the aim of evaluating the effect of different control setpoints in the presence of high-pressure sodium (HPS) supplemental lighting and light-emitting diode (LED) supplemental lighting on greenhouse performance. To comprehensively assess the influence of each control setpoint, a sensitivity analysis (SA) was performed, systematically varying the control setpoints over a wider range than what is typically observed in tomato production. The SA utilized different control setpoints as inputs, while energy consumption and crop yield were considered as outputs. The setpoints for relative humidity and air temperature during the light period were identified as the most influential factors. This highlights the importance of accurate measurements and predictions of temperature and humidity to optimize environmental conditions in indoor greenhouses when implementing a predictive control strategy. The results obtained from this SA can contribute to the development of reduced-order models that focus on the most influential variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(C{O}_{2}^{ppm}\):

Carbon dioxide (CO2) concentration, ppm

\({I}_{Glob}\):

Global solar radiation, W/m2

\({p}_{Band}\):

Tolerance band for control, -

\(RH\):

Relative humidity, %

\(Sum{I}_{Glob}\):

Daily global solar radiation sum, MJ/m2/day

\(T\):

Temperature, ◦C

\(Air\):

Inside air

\(blScr\):

Black screen parameters

\(Dark\):

Period when the lamps are off

\(Day\):

Period from sunrise to sunset

\(Lamps\):

Lamps parameters

\(Light\):

Period when the lamps are on

\(Night\):

Period from sunset to sunrise

\(SP\):

Setpoint

\(thScr\):

Thermal screen parameters

References

  1. United Nation, World Population Prospects 2019: Highlights, Department of Economic and Social Affairs (2019). https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf

  2. Food and Agriculture Organization of the United Nations, Ed., The future of food and agriculture: trends and challenges. Rome: Food and Agriculture Organization of the United Nations, 2017

    Google Scholar 

  3. Rizwan, A., Khan, A.N., Ahmad, R., Kim, D.H.: Optimal environment control mechanism based on OCF connectivity for efficient energy consumption in greenhouse. IEEE Internet Things J. 10(6), 5035–5049 (2023). https://doi.org/10.1109/JIOT.2022.3222086

    Article  Google Scholar 

  4. Duarte-Galvan, C., et al.: Review. Advantages and disadvantages of control theories applied in greenhouse climate control systems. Span J. Agric. Res. 10(4), 926 (2012)https://doi.org/10.5424/sjar/2012104-487-11

  5. Zhang, S., Guo, Y., Zhao, H., Wang, Y., Chow, D., Fang, Y.: Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J. Clean. Prod. 274, 122695 (2020). https://doi.org/10.1016/j.jclepro.2020.122695

    Article  Google Scholar 

  6. Chimankare, R.V., Das, S., Kaur, K., Magare, D.: A review study on the design and control of optimised greenhouse environments. J. Trop. Ecol. 39, e26 (2023). https://doi.org/10.1017/S0266467423000160

    Article  Google Scholar 

  7. Soussi, M., Chaibi, M.T., Buchholz, M., Saghrouni, Z.: Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy 12(3), 626 (2022). https://doi.org/10.3390/agronomy12030626

    Article  Google Scholar 

  8. Katzin, D., van Mourik, S., Kempkes, F., van Henten, E.J.: GreenLight – an open source model for greenhouses with supplemental lighting: evaluation of heat requirements under LED and HPS lamps. Biosys. Eng. 194, 61–81 (2020). https://doi.org/10.1016/j.biosystemseng.2020.03.010

    Article  Google Scholar 

  9. Katzin, D., Marcelis, L.F.M., van Mourik, S.: Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Appl. Energy 281, 116019 (2021). https://doi.org/10.1016/j.apenergy.2020.116019

    Article  Google Scholar 

  10. Priva | Smart horticulture & building management solutions, Priva. https://www.priva.com/. Accessed 25 May 2023

  11. Ridder | Innovative technical solutions for protected horticulture | Inside greenhouse technology for profitable horticulture, Ridder. https://ridder.com/ (Accessed 25 May 2023)

  12. Complete Greenhouse Projects - Dalsem, Dalsem. https://www.dalsem.com/en (Accessed 25 May 2023)

  13. Certhon Growing anything, anywhere. For everyone., Certhon. https://certhon.com/ Accessed 25 May 2023)

  14. Havecon | Horticultural Projects, Havecon. https://havecon.com/en/. Accessed 25 May 2023

  15. Payne, H.J., Hemming, S., Van Rens, B.A.P., Van Henten, E.J., Van Mourik, S.: Quantifying the role of weather forecast error on the uncertainty of greenhouse energy prediction and power market trading. Biosys. Eng. 224, 1–15 (2022). https://doi.org/10.1016/j.biosystemseng.2022.09.009

    Article  Google Scholar 

  16. Stanghellini, C. van’t Ooster, B. Heuvelink, E.: Greenhouse horticulture, Technology for optimal crop production. The Netherlands: Wageningen Academic Publishers (2019)

    Google Scholar 

  17. Vanthoor, B.H.E., Stanghellini, C., Van Henten, E.J., De Visser, P.H.B.: A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosys. Eng. 110(4), 363–377 (2011). https://doi.org/10.1016/j.biosystemseng.2011.06.001

    Article  Google Scholar 

  18. EnergyPlus. https://energyplus.net/weather/sources#CWEC. Accessed 08 Jun 2023

  19. Katzin, D.: Energy saving by LED lighting in greenhouses : a process-based modelling approach. Wageningen University (2021). https://doi.org/10.18174/544434

    Article  Google Scholar 

  20. Turcotte, G. :Production de la tomate de serre au Québec, Syndicat des producteurs en serre du Québec, p. 297, Apr. 2015

    Google Scholar 

  21. Palmitessa, O.D., Pantaleo, M.A., Santamaria, P.: Applications and development of LEDs as supplementary lighting for tomato at different latitudes. Agronomy 11(5), 835 (2021). https://doi.org/10.3390/agronomy11050835

    Article  Google Scholar 

  22. Saltelli, A. (ed.): Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models. Wiley, Hoboken, NJ (2004)

    MATH  Google Scholar 

  23. Saltelli, A., Ed., Global Sensitivity Analysis: The Primer. Chichester, England ; Hoboken, NJ: John Wiley (2008)

    Google Scholar 

  24. Dorais, M.: PLG-3207-H23: Cultures en serre (17896, 17897). Université Laval

    Google Scholar 

  25. Kim, R., Kim, J., Lee, I., Yeo, U., Lee, S., Decano-Valentin, C.: Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: development of VR a database using CFD. Biosys. Eng. 207, 33–58 (2021). https://doi.org/10.1016/j.biosystemseng.2021.02.017

    Article  Google Scholar 

  26. EnergyPlus. https://energyplus.net/weather. Accessed 25 May 2023

  27. Latin Hypercube Sampling vs. Monte Carlo Sampling – Data Science Genie. https://datasciencegenie.com/latin-hypercube-sampling-vs-monte-carlo-sampling/. Accessed 08 Jun 2023

  28. Petelet, M., Iooss, B., Asserin, O., Loredo, A.: Latin hypercube sampling with inequality constraints. AStA Adv. Stat. Anal. 94(4), 325–339 (2010). https://doi.org/10.1007/s10182-010-0144-z

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, A.-T., Reiter, S.: A performance comparison of sensitivity analysis methods for building energy models. Build. Simul. 8(6), 651–664 (2015). https://doi.org/10.1007/s12273-015-0245-4

    Article  Google Scholar 

  30. Gagnon, R., Gosselin, L., Decker, S.: Sensitivity analysis of energy performance and thermal comfort throughout building design process. Energy and Buildings 164, 278–294 (2018). https://doi.org/10.1016/j.enbuild.2017.12.066

    Article  Google Scholar 

  31. Tian, W.: A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 20, 411–419 (2013). https://doi.org/10.1016/j.rser.2012.12.014

    Article  Google Scholar 

  32. Multiple linear regression - MATLAB regress, Matlab. https://www.mathworks.com/help/stats/regress.html. Accessed 25 May 2023

  33. Grégoire, F., Gosselin, L., Alamdari, H.: Sensitivity of carbon anode baking model outputs to kinetic parameters describing pitch pyrolysis. Ind. Eng. Chem. Res. 52(12), 4465–4474 (2013). https://doi.org/10.1021/ie3030467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pier Trépanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trépanier, MP., Gosselin, L. (2024). Impact of Setpoint Control on Indoor Greenhouse Climate Modeling. In: Jørgensen, B.N., da Silva, L.C.P., Ma, Z. (eds) Energy Informatics. EI.A 2023. Lecture Notes in Computer Science, vol 14467. Springer, Cham. https://doi.org/10.1007/978-3-031-48649-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48649-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48648-7

  • Online ISBN: 978-3-031-48649-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics