Skip to main content

Market Abstraction of Energy Markets and Policies - Application in an Agent-Based Modeling Toolbox

  • Conference paper
  • First Online:
Energy Informatics (EI.A 2023)

Abstract

In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.smard.de.

References

  1. ENTSO-E: Conclusions from Stakeholder Engagement on 2030 Market Design (2022)

    Google Scholar 

  2. Bichler, M., et al.: Electricity markets in a time of change: a call to arms for business research. Schmalenbach J. Bus. Res. 74(1), 77–102 (2021). https://doi.org/10.1007/s41471-021-00126-4

    Article  Google Scholar 

  3. Künzel, T.: Entwicklung eines agentenbasierten Marktmodells zur Bewertung der Dynamik am deutschen Strommarkt in Zeiten eines steigenden Anteils erneuerbarer Energien (2019). https://doi.org/10.5445/IR/1000100456

  4. Groissböck, M.: Are open source energy system optimization tools mature enough for serious use? Renew. Sustain. Energy Rev. 102, 234–248 (2019). https://doi.org/10.1016/j.rser.2018.11.020

    Article  Google Scholar 

  5. Pfenninger, S., et al.: Opening the black box of energy modelling: strategies and lessons learned. Energ. Strat. Rev. 19, 63–71 (2018). https://doi.org/10.1016/j.esr.2017.12.002

    Article  Google Scholar 

  6. Borokhov, V.: Antimonopoly regulation method in energy markets based on the Vickrey-Clarke-Groves mechanism. Electr. Power Syst. Res. 209, 107964 (2022). https://doi.org/10.1016/j.epsr.2022.107964

    Article  Google Scholar 

  7. Huang, M., Wei, Z., Ju, P., Wang, J., Chen, S.: Incentive-compatible market clearing for a two-stage integrated electricity-gas-heat market. IEEE Access 7, 120984–120996 (2019). https://doi.org/10.1109/ACCESS.2019.2936889

    Article  Google Scholar 

  8. Azizi, A., Aminifar, F., Moeini-Aghtaie, M., Alizadeh, A.: Transactive energy market mechanism with loss implication. IEEE Trans. Smart Grid 12(2), 1215–1223 (2021). https://doi.org/10.1109/TSG.2020.3028825

    Article  Google Scholar 

  9. Tsaousoglou, G., Giraldo, J.S., Paterakis, N.G.: Market mechanisms for local electricity markets: a review of models, solution concepts and algorithmic techniques. Renew. Sustain. Energy Rev. 156, 111890 (2022). https://doi.org/10.1016/j.rser.2021.111890

    Article  Google Scholar 

  10. Weinhardt, C., et al.: How far along are local energy markets in the DACH+ region? A comparative market engineering approach. In: Proceedings of the Tenth ACM International Conference on Future Energy Systems. E-Energy 1919, pp. 544–549. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3307772.3335318

  11. Sensfuß,F., Genoese, M., Ragwitz, M., Möst, D.: Agent-based simulation of electricity markets -a literature review-. Energy Stud. Rev. 15(2) (2007). https://doi.org/10.15173/esr.v15i2.507

  12. Hansen, P., Liu, X., Morrison, G.M.: Agent-based modelling and socio-technical energy transitions: a systematic literature review. Energy Res. Soc. Sci. 49, 41–52 (2019). https://doi.org/10.1016/j.erss.2018.10.021

    Article  Google Scholar 

  13. Newbery, D.: Efficient renewable electricity support: designing an incentive-compatible support scheme. EJ 44(3) (2023). https://doi.org/10.5547/01956574.44.3.dnew

  14. Gabrielli, P., Aboutalebi, R., Sansavini, G.: Mitigating financial risk of corporate power purchase agreements via portfolio optimization. Energy Econ. 109, 105980 (2022). https://doi.org/10.1016/j.eneco.2022.105980

    Article  Google Scholar 

  15. Roth, A.E., Wilson, R.B.: How market design emerged from game theory: a mutual interview. J. Econ. Perspect. 33(3), 118–143 (2019). https://doi.org/10.1257/jep.33.3.118

    Article  Google Scholar 

  16. Cramton, P.: Electricity market design. Oxf. Rev. Econ. Policy 33(4), 589–612 (2017). https://doi.org/10.1093/oxrep/grx041

    Article  Google Scholar 

  17. Fatras, N., Ma, Z., Jørgensen, B.N.: An agent-based modelling framework for the simulation of large-scale consumer participation in electricity market ecosystems. Energy Inform. 5(4), 47 (2022). https://doi.org/10.1186/s42162-022-00229-0-0

    Article  Google Scholar 

  18. Ma, Z., Schultz, M.J., Christensen, K., Værbak, M., Demazeau, Y., Jørgensen, B.N.: The application of ontologies in multi-agent systems in the energy sector: a scoping review. Energies 12(16), 3200 (2019). https://doi.org/10.3390/en12163200

    Article  Google Scholar 

  19. Battula, S., Tesfatsion, L., McDermott, T.E.: An ERCOT test system for market design studies. Appl. Energy 275, 115182 (2020). https://doi.org/10.1016/j.apenergy.2020.115182

    Article  Google Scholar 

  20. Reeg, M.: AMIRIS - ein agentenbasiertes simulationsmodell zur akteursspezifischen analyse technoökonomischer und soziotechnischer effekte bei der strommarktintegration und refinanzierung erneuerbarer energien. Technischen Universität Dresden (2019)

    Google Scholar 

  21. Glismann, S.: Ancillary services acquisition model: considering market interactions in policy design. Renew. Sustain. Energy Rev. (2021). https://doi.org/10.1016/117697

    Article  Google Scholar 

  22. Qussous, R., Harder, N., Schafer, M., Weidlich, A.: Increasing the realism of electricity market modeling through market interrelations (2022)

    Google Scholar 

  23. Okwuibe, G.C., et al.: Evaluation of hierarchical, multi- agent, community-based, local energy markets based on key performance indicators. Energies 15(10), 3575 (2022). https://doi.org/10.3390/en15103575

    Article  Google Scholar 

  24. Zade, M., Lumpp, S.D., Tzscheutschler, P., Wagner, U.: Satisfying user preferences in community-based local energy markets auction-based clearing approaches. Appl. Energy 306, 118004 (2022). https://doi.org/10.1016/j.apenergy.2021.118004

    Article  Google Scholar 

  25. Santos, G., et al.: Multi-agent simulation of competitive electricity markets: autonomous systems cooperation for European market modeling. Energy Convers. Manage. 99, 387–399 (2015). https://doi.org/10.1016/j.enconman.2015.04.042

    Article  Google Scholar 

  26. Künzel, T., Weidlich, A.: Flexibility as an economic commodity in the intelligent energy system for the efficient integration of renewable energies (2015)

    Google Scholar 

  27. Bublitz, A., Ringler, P., Genoese, M., Fichtner, W.: Agent-based simulation of the German and French wholesale electricity markets. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2. ICAART 2014, pp. 40–49. SCITEPRESS - Science and Technology Publications, Lda (2014). https://doi.org/10.5220/0004760000400049

  28. USEF Design Team: USEF - The Framework Explained (2021)

    Google Scholar 

  29. Weber, C.: Achievements and challenges in European energy markets. J. Mod. Power Syst. Clean Energy (2023). https://doi.org/10.35833/MPCE.2023.000061

    Article  Google Scholar 

  30. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? In: Proceedings of the Fourth International Conference on Autonomous Agents, AGENTS 2000, pp. 56–63. Association for Computing Machinery, New York (2000). https://doi.org/10.1145/336595.337033

  31. Frey, U.J., Klein, M., Nienhaus, K., Schimeczek, C.: Self-reinforcing electricity price dynamics under the variable market premium scheme. Energies 13(20), 5350 (2020). https://doi.org/10.3390/en13205350

    Article  Google Scholar 

  32. Schimeczek, C., et al.: AMIRIS: agent-based market model for the investigation of renewable and integrated energy systems. JOSS 8(84), 5041 (2023). https://doi.org/10.21105/joss.05041

  33. Fraunholz, C., Keles, D., Fichtner, W.: On the role of electricity storage in capacity remuneration mechanisms. Energy Policy 149, 112014 (2021). https://doi.org/10.1016/j.enpol.2020.112014

    Article  Google Scholar 

  34. Fraunholz, C., Hladik, D., Keles, D., Möst, D., Fichtner, W.: On the long-term efficiency of market splitting in Germany. Energy Policy 149, 111833 (2021). https://doi.org/10.1016/j.enpol.2020.111833

    Article  Google Scholar 

  35. Krishnamurthy, D.: Psst: an open-source power system simulation toolbox in python. In: 2016 North American Power Symposium (NAPS), pp. 1–6 (2016). https://doi.org/10.1109/NAPS.2016.7747925

  36. MISC

    Google Scholar 

  37. Santos, G., Pinto, T., Vale, Z.: Ontologies to enable interoperability of multi- agent electricity markets simulation and decision support. Electronics 10(11), 1270 (2021). https://doi.org/10.3390/electronics10111270

    Article  Google Scholar 

  38. Santos, G., Pinto, T., Praça, I., Vale, Z.: Iberian electricity market ontology to enable smart grid market simulation. Energy Inform. 1(1), 1–14 (2018). https://doi.org/10.1186/s42162-018-0018-2

    Article  Google Scholar 

  39. Santos, G., Pinto, T., Praça, I., Vale, Z.: Nord pool ontology to enhance electricity markets simulation in MASCEM. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 283–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2_24

    Chapter  Google Scholar 

  40. Santos, G., Pinto, T., Praca, I., Vale, Z.: EPEX ontology: enhancing agent- based electricity market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), pp. 1–6 (2017). https://doi.org/10.1109/ISAP.2017.8071411

  41. Booshehri, M., et al.: Introducing the open energy ontology: enhancing data interpretation and interfacing in energy systems analysis. Energy AI 5, 100074 (2021). https://doi.org/10.1016/j.egyai.2021.100074

    Article  Google Scholar 

  42. Blanco, J.M., Rossi, B., Pitner, T.: A comparative study of energy domain ontologies. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds.) WEBIST WEBIST 2020 2021. LNBIP, vol. 469, pp. 43–58. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24197-0_3

    Chapter  Google Scholar 

  43. Tomašević, N.M., Batić, M.Č., Blanes, L.M., Keane, M.M., Vraneš, S.: Ontology-based facility data model for energy management. Adv. Eng. Inform. 29(4), 971–984 (2015). https://doi.org/10.1016/j.aei.2015.09.003

  44. Haghgoo, M., Sychev, I., Monti, A., Fitzek, F.H.: SARGON smart energy domain ontology. IET Smart Cities 2(4), 191–198 (2020). https://doi.org/10.1049/iet-smc.2020.0049

    Article  Google Scholar 

  45. Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21545-7_9

    Chapter  Google Scholar 

  46. OFFIS: Mango-Agents - Modular Python Agent Framework, Mango Agents (2023). https://gitlab.com/mango-agents/mango. Accessed 30 June 2023

  47. Acosta, R.R., Lehnhoff, S., Gomez, J.M.: An electricity market categorization based on morphological analysis for smart grid development. In: 2022 18th International Conference on the European Energy Market (EEM), pp. 1–7 (2022). https://doi.org/10.1109/EEM54602.2022.9921038

  48. Santos, G., Pinto, T., Vale, Z., Praça, I., Morais, H.: Electricity markets ontology to support MASCEM’s simulations. In: Bajo, J., et al. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 393–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39387-2_33

    Chapter  Google Scholar 

  49. Salah, F., Flath, C.M., Schuller, A., Will, C., Weinhardt, C.: Morphological analysis of energy services: paving the way to quality differentiation in the power sector. Energy Policy 106, 614–624 (2017). https://doi.org/10.1016/j.enpol.2017.03.024

    Article  Google Scholar 

  50. Santos, G., Pinto, T., Praça, I., Vale, Z.: An interoperable approach for energy systems simulation: electricity market participation ontologies. Energies 9(11), 878 (2016). https://doi.org/10.3390/en9110878

    Article  Google Scholar 

  51. EPEX SPOT: Trading Products \(|\) EPEX SPOT (2022). https://www.epexspot.com/en/tradingproducts. Accessed 05 Sept 2023

  52. Desruisseaux, B.: Internet calendaring and scheduling core object specification (iCalendar). Request for Comments RFC 5545, 168 p. Internet Engineering Task Force (2009). https://doi.org/10.17487/RFC5545

  53. Shah, D., Chatterjee, S.: A comprehensive review on day-ahead electricity market and important features of world’s major electric power exchanges. Int. Trans. Electr. Energy Syst. 30(7), e12360 (2020). https://doi.org/10.1002/2050-7038.12360

    Article  Google Scholar 

  54. Bundesnetzagentur: Monitoringbericht 2022 (2023)

    Google Scholar 

  55. MISC

    Google Scholar 

  56. S.G.M. Intelligence (Firm): World Electric Power Plants Database, March 2017. Version 2. Harvard Dataverse, 9 March 2018. https://doi.org/10.7910/DVN/OKEZ8A, https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi10.7910/DVN/OKEZ8A. Accessed 04 July 2023

  57. Redaktionsassistenz, U.B.A.: Datenbank “Kraftwerke in Deutschland”. XLS. Umweltbundesamt. https://www.umweltbundesamt.de/dokument/datenbank-kraftwerkein-deutschland. Accessed 04 July 2023

  58. Bundesnetzagentur: Kraftwerksliste Der Bundesnetzagentur (Stand: 31. Mai 2022). XLS (2022). https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen /Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_2022.html. Accessed 13 Nov 2022

  59. EEX: Environmental Market Data (2023). https://www.eex.com/en/marketdata/environmentals. Accessed 04 July 2023

  60. EEX: EEX Market Data (2023). https://www.eex.com/en/market-data. Accessed 04 July 2023

  61. Destatis: Data on Energy Price Trends - Long-time Series to Dezember 2022 (2023). https://www.destatis.de/EN/Themes/Economy/Prices/Publications/Downloads-Energy-Price-Trends/energy-price-trends-pdf-5619002.html. Accessed 04 July 2023

  62. Weidlich, A., Veit, D.: Agent-based simulations for electricity market regulation advice: procedures and an example. SSRN J. (2007). https://doi.org/10.2139/ssrn.2951092

  63. Wolgast, T., Nieße, A.: Approximating energy market clearing and bidding with model-based reinforcement learning. arXiv: 2303.01772 [cs, eess] (2023). https://doi.org/10.48550/arXiv.2303.01772. Accessed 24 May 2023

  64. Sanayha, M., Vateekul, P.: Model-based deep reinforcement learning for wind energy bidding. Int. J. Electr. Power Energy Syst. 136, 107625 (2022). https://doi.org/10.1016/j.ijepes.2021.107625

    Article  Google Scholar 

  65. Yang, L., Sun, Q., Zhang, N., Li, Y.: Indirect multi-energy transactions of energy internet with deep reinforcement learning approach. IEEE Trans. Power Syst. 37(5), 4067–4077 (2022). https://doi.org/10.1109/TPWRS.2022.3142969

    Article  Google Scholar 

Download references

Acknowledgments

Kim K. Miskiw and Nick Harder thank the German Federal Ministry for Economic Affairs and Climate Action for the funding of the ASSUME project under grant number BMWK 03EI1052A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Maurer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maurer, F., Miskiw, K.K., Acosta, R.R., Harder, N., Sander, V., Lehnhoff, S. (2024). Market Abstraction of Energy Markets and Policies - Application in an Agent-Based Modeling Toolbox. In: Jørgensen, B.N., da Silva, L.C.P., Ma, Z. (eds) Energy Informatics. EI.A 2023. Lecture Notes in Computer Science, vol 14468. Springer, Cham. https://doi.org/10.1007/978-3-031-48652-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48652-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48651-7

  • Online ISBN: 978-3-031-48652-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics