Skip to main content

Predicting Disease-Associated Genes Through Interaction and Ontology-Based Inference Technique

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

This article proposed a new framework to predict novel disease-associated genes. First, we have compiled a gene-disease network from an existing gene-disease association database. Next, we associated gene ontology and protein interaction networks with the compiled gene-disease network. The prediction is based on the three statistical hypothesis, we have deduced from the topological structure of the compiled network. The first two hypothesis represents the association between the functional similar genes with the disease classes. The third hypothesis infers the association between the genes with disease class. The prediction is made based on the conclusions of these three hypotheses. Statistical tests are conducted to prove the three hypothesis. The results show 400 high-confidence gene-disease associations. The predictions are validated using a literature study and statistical test. The predictions are demonstrated by using several visualization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandyopadhyay, S., Ray, S., Mukhopadhyay, A., Maulik, U.: A multiobjective approach for identifying protein complexes and studying their association in multiple disorders. Algorithms Mol. Biol. 10(1), 1–15 (2015)

    Article  Google Scholar 

  2. Bhattacharjee, D., Hossain, S.M.M., Sultana, R., Ray, S.: Topological inquisition into the PPI networks associated with human diseases through graphlet frequency distribution. In: Shankar, B.U., Ghosh, K., Mandal, D.P., Ray, S.S., Zhang, D., Pal, S.K. (eds.) PReMI 2017. LNCS, vol. 10597, pp. 431–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69900-4_55

    Chapter  Google Scholar 

  3. Cho, D.Y., Kim, Y.A., Przytycka, T.M.: Chapter 5: network biology approach to complex diseases. PLoS Comput. Biol. 8(12), e1002820 (2012)

    Google Scholar 

  4. Emmert-Streib, F., Tripathi, S., Simoes, R.D.M., Hawwa, A.F., Dehmer, M.: The human disease network: opportunities for classification, diagnosis, and prediction of disorders and disease genes. Syst. Biomed. 1(1), 20–28 (2013)

    Google Scholar 

  5. Goh, K.I., Choi, I.G.: Exploring the human diseasome: the human disease network. Brief. Funct. Genomics 11(6), 533–542 (2012)

    Article  Google Scholar 

  6. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007)

    Article  Google Scholar 

  7. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(suppl_1), D514–D517 (2005)

    Google Scholar 

  8. Hossain, A., Willan, A.R., Beyene, J.: An improved method on Wilcoxon rank sum test for gene selection from microarray experiments. Commun. Stat.-Simul. Comput. 42(7), 1563–1577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, D.W., et al.: The David gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8(9), R183 (2007)

    Article  Google Scholar 

  10. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(suppl 1), D355–D360 (2010)

    Article  Google Scholar 

  11. Le, D.H., Dang, V.T.: Ontology-based disease similarity network for disease gene prediction. Vietnam J. Comput. Sci. 3(3), 197–205 (2016)

    Article  Google Scholar 

  12. Morissette, L., Chartier, S.: The k-means clustering technique: general considerations and implementation in mathematica. Tutorials Quantit. Methods Psychol. 9(1), 15–24 (2013)

    Article  Google Scholar 

  13. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Article  Google Scholar 

  14. Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new measure for functional similarity of gene products based on gene ontology. BMC Bioinform. 7(1), 1–16 (2006)

    Article  Google Scholar 

  15. Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12(3), 368–373 (2002)

    Article  Google Scholar 

  16. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577–584 (2001)

    Google Scholar 

  17. Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4(1), 189 (2008)

    Article  Google Scholar 

  18. Yang, K., et al.: HerGePred: heterogeneous network embedding representation for disease gene prediction. IEEE J. Biomed. Health Inform. 23(4), 1805–1815 (2018)

    Article  Google Scholar 

  19. Zhang, X., et al.: The expanded human disease network combining protein-protein interaction information. Eur. J. Hum. Genet. 19(7), 783–788 (2011)

    Article  Google Scholar 

  20. Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5(1), 1–10 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Alberuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alberuni, S., Ray, S. (2024). Predicting Disease-Associated Genes Through Interaction and Ontology-Based Inference Technique. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1956. Springer, Cham. https://doi.org/10.1007/978-3-031-48879-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48879-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48878-8

  • Online ISBN: 978-3-031-48879-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics