Skip to main content

Spanning Cactus Existence Problem on Flower Snark Graphs

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

A spanning cactus is a spanning substructure of a graph similar to a spanning tree of a graph. But it is more advantageous than the spanning tree in terms of reliability in network applications due to its higher edge connectivity. In genome expression analysis cactus graphs are widely used for important feature extraction and gene alignment. However, a graph may or may not contain a spanning cactus. Checking whether there exists a spanning cactus in a graph (SCEP) is an NP-Complete problem. In immediate past few years, the SCEP have been studied in various special graphs, such as Petersen graph, generalized Petersen graphs, \(3\times 3\times 3\) grid graph, Desargues graph, Windmill graphs etc. In this article, we have presented that there does not exist any spanning cactus when the considered graph is a Flower Snark Graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)

    Book  MATH  Google Scholar 

  2. West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  3. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications, Mineola (2017)

    MATH  Google Scholar 

  4. Zmazek, B., Zerovnik, J.: Estimating the traffic on weighted cactus networks in linear time. In: Ninth International Conference on Information Visualisation (IV 2005), pp. 536–541. IEEE (2005)

    Google Scholar 

  5. Paten, B., et al.: Cactus graphs for genome comparisons. J. Comput. Biol. 18(3), 469–481 (2011)

    Article  MathSciNet  Google Scholar 

  6. Paten, B., et al.: Cactus graphs for genome comparisons. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 410–425. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12683-3_27

    Chapter  Google Scholar 

  7. Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., Haussler, D.: Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21(9), 1512–1528 (2011)

    Article  Google Scholar 

  8. Kehr, B., Trappe, K., Holtgrewe, M., Reinert, K.: Genome alignment with graph data structures: a comparison. BMC Bioinform. 15(1), 1–20 (2014)

    Article  Google Scholar 

  9. Nguyen, N., et al.: Building a pan-genome reference for a population. J. Comput. Biol. 22(5), 387–401 (2015)

    Article  MathSciNet  Google Scholar 

  10. Armstrong, J., et al.: Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587(7833), 246–251 (2020)

    Article  Google Scholar 

  11. Fleischer, L.: Building chain and cactus representations of all minimum cuts from Hao-Orlin in the same asymptotic run time. J. Algorithms 33(1), 51–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinits, E.A.: On the structure of a family of minimal weighted cuts in a graph. Studies in Discrete Optimization (1976)

    Google Scholar 

  13. Datta, A.K.: Approximate spanning cactus. Inf. Process. Lett. 115(11), 828–832 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. Theoret. Comput. Sci. 378(3), 237–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kabadi, S.N., Punnen, A.P.: Spanning cactus of a graph: existence, extension, optimization and approximation. Discret. Appl. Math. 161(1), 167–175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Palbom, A.: Complexity of the directed spanning cactus problem. Discret. Appl. Math. 146(1), 81–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Datta, A.K., Debnath, C.: Spanning cactus: complexity and extensions. Discret. Appl. Math. 233, 19–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das, K., Pal, M.: An optimal algorithm to find maximum and minimum height spanning trees on cactus graphs. Adv. Model. Optim. 10(1), 121–134 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Debnath, C., Datta, A.K.: Spanning cactus existence in a three-dimensional (3 x3 x3) grid. In: Proceedings of the International Conference on Innovative Computing & Communications (ICICC) (2020)

    Google Scholar 

  20. Debnath, C., Datta, A.K.: A short note on spanning cactus problem of Petersen graph. In: Dawn, S., Balas, V.E., Esposito, A., Gope, S. (eds.) ICIMSAT 2019. LAIS, vol. 12, pp. 757–760. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42363-6_88

    Chapter  Google Scholar 

  21. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. Pearson Education India (1974)

    Google Scholar 

  22. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. PHI Learning Pvt. Ltd., Originally MIT Press (2010)

    Google Scholar 

  23. Daripa, K.: Spanning cactus existence in generalized Petersen graphs. Innov. Syst. Softw. Eng. (2022)

    Google Scholar 

  24. Daripa, K.: Spanning cactus in desargues graph. In: Intelligent Application of Recent Innovation in Science & Technology IARIST-2K22. Accepted, Presented and Yet to be published

    Google Scholar 

  25. Debnath, C., Daripa, K., Mondal, R., Datta, A.K.: Spanning cactus existence, optimization and extension in windmill graphs. In: Algorithms for Intelligent Systems, International Conference on Data, Electronics and Computing (ICDEC-2022). Accepted, Presented and Yet to be published

    Google Scholar 

  26. Isaacs, R.: Infinite families of nontrivial trivalent graphs which are not tait colorable. Am. Math. Mon. 82(3), 221–239 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rao, K.S., Kumar, U.V.C., Mekala, A.: Rainbow connection number of flower snark graph. Int. J. Appl. Math. 33(4), 591 (2020)

    Google Scholar 

  28. Sasaki, D., Dantas, S., de Figueiredo, C.M.H.: On coloring problems of snark families. Electron. Notes Discret. Math. 37, 45–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jothi, R.M.J., Revathi, R., Angel, D.: SSP-structure of closed helm and flower snark graph families. In: Journal of Physics: Conference Series, vol. 1770, p. 012081. IOP Publishing (2021)

    Google Scholar 

  30. Kratica, J., Matić, D., Filipović, V.: Weakly convex and convex domination numbers for generalized Petersen and flower snark graphs. Rev. Un. Mat. Argentina 61(2), 441–455 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pulleyblank, W.R.: A note on graphs spanned by eulerian graphs. J. Graph Theory 3(3), 309–310 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations, vol. 12. Springer, New York (2006). https://doi.org/10.1007/b101971

    Book  MATH  Google Scholar 

  33. Hobbs, A.M.: Hamiltonian squares of cacti. J. Comb. Theory Ser. B 26(1), 50–65 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  35. Clark, L., Entringer, R.: Smallest maximally nonhamiltonian graphs. Period. Math. Hung. 14(1), 57–68 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Daripa or Chinmay Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daripa, K., Debnath, C., Karmakar, A. (2024). Spanning Cactus Existence Problem on Flower Snark Graphs. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1956. Springer, Cham. https://doi.org/10.1007/978-3-031-48879-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48879-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48878-8

  • Online ISBN: 978-3-031-48879-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics