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Abstract
Given a population with dynamic pairwise connections, we ask if the entire population could be (indi-
rectly) infected by a small group of k initially infected individuals. We formalise this problem as the
Temporal Reachability Dominating Set (TaRDiS) problem on temporal graphs. We provide posi-
tive and negative parameterized complexity results in four different parameters: the number k of initially
infected, the lifetime τ of the graph, the number of locally earliest edges in the graph, and the treewidth
of the footprint graph G↓. We additionally introduce and study the MaxMinTaRDiS problem, where
the aim is to schedule connections between individuals so that at least k individuals must be infected
for the entire population to become fully infected. We classify three variants of the problem: Strict,
Nonstrict, and Happy. We show these to be coNP-complete, NP-hard, and ΣP

2 -complete, respectively.
Interestingly, we obtain hardness of the Nonstrict variant by showing that a natural restriction is exactly
the well-studied Distance-3 Independent Set problem on static graphs.

Keywords: Temporal Graphs, Temporal Reachability, Treewidth, Computational Complexity, Polynomial
Hierarchy

1 Introduction
A natural problem in the study of networks is that of finding a small set of individuals which together
can affect the entire network. This problem is practically relevant in identifying influential entities in social
networks, in gauging the risk of viral spread in biological networks, or in choosing sources to broadcast from
in wireless networks. We study this problem through the lens of temporal graphs. That is, graphs which
change over time, capturing the dynamic nature intrinsic to many real-world networks.

We formalize the notion of a set of sources which together reach the whole temporal graph as a Temporal
Reachability Dominating Set, or TaRDiS. We study the complexity of the problem of finding a TaRDiS of a
given size in a given temporal graph. Later, we ask: if we can choose when connections between individuals
exist, can we maximize the size of the minimum TaRDiS? That is, for viral spread, can we guarantee that
the entire population will not be contaminated by at most k initial infections. We refer to this problem as
MaxMinTaRDiS.

Our problems sit at the intersection of reachability and covering, which are two rich classes of (temporal)
graph problems. Reachability is a fundamental concept in temporal graph theory. Temporal reachability and
related problems have been the subject of extensive study since the seminal work in the field by Kempe,
Kleinberg and Kumar [1]. Several works focus on the complexity of choosing or modifying times to optimize
reachability [1–5], while some consider as input temporal graphs in which times are immutably fixed [6–10].
A comparison between our problems and some of those in the literature is shown in Table 1.
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MaxMinTaRDiS is closely related to the MinMaxReach problem studied by Enright, Meeks and
Skerman [3], in which the objective is to minimize the maximum number of individuals reached by any single
vertex. TaRDiS, on the other hand, vastly generalizes Casteigts’s [11] notion of J 1∀ connectivity, in which
the question is whether any single vertex reaches the entire network. This framing of reachability asks what
the worst-case spread is from a single source in the temporal graph. In reality, studied populations are often
infected by several individuals. For example, SARS-CoV-2 had been independently introduced to the UK at
least 1300 times by June 2020 [12]. This, a dynamic population infected by many sources, is precisely the
setting motivating our TaRDiS problem.

Problem Choose such that reach Aim/motivation

MaxMinTaRDiS times for edges no coalition of k nodes all nodes Minimize connectivity

TaRDiS nothing a coalition of k nodes all nodes Assess connectivity

MinMaxReach [3] times for edges no single node more than k nodes Minimize connectivity

J 1∀ connectedness [11] nothing a single node all nodes Assess connectivity

Reachability
Inference [1] times for edges a designated root node all “good” nodes and no

“bad” nodes Network design

ReachFast [13], edges to delay each source in the
designated set all nodes Maximize connectivity

MinReachDelete [4, 14] edges to delete the specified coalition at most r vertices Minimize connectivity

MinReachDelay [4] edges to delay the specified coalition at most r vertices Minimize connectivity

Table 1: Comparison of our problems TaRDiS and MaxMinTaRDiS to problems in the literature.

Our work is focused on the computational (parameterized) complexity of TaRDiS and
MaxMinTaRDiS, which depends heavily on which formalisation of the problems is considered. In particu-
lar, instantaneous spread through a large swath of the population, while realistic in some computer networks,
is inconsistent with viral spread in a biological system. Further, should multiple interactions between the
same pair of individuals be allowed? Lastly, should it be possible for a single individual to simultaneously
interact with several others?

We consider all combinations of answers to these questions, and in all cases for both problems: show
that the problem is computationally hard in general; identify the maximum number of discrete times at
which edges can appear such that the problem remains tractable; and provide (parameterized) algorithms.
Interestingly, we also show through a nontrivial proof that MaxMinTaRDiS generalizes the well-studied
Distance-3 Independent Set problem.

1.1 Problem Setting
We begin with some standard definitions. We denote by [i, j] the set {i, i + 1, . . . , j} and [j] the set [1, j].
Let G = (V,E) be an undirected graph with (u, v) ∈ E. We say that u and v are adjacent (also neighbours)
and that the edge (u, v) is incident to both u and v. If S ⊆ V is a set of vertices, we say an edge (u, v) is
incident to S if one of its endpoints u or v is in S. For any vertex v ∈ V , the closed neighbourhood of v is
denoted N [V ] := {v} ∪ {u : u is adjacent to v}. We say G is planar if it can be drawn in a plane without
any edges intersecting.

A temporal graph G = (V,E, λ) consists of a set of vertices V , a set of edges E and a function λ : E →
2τ \ {∅} which maps each edge to a discrete set of times where the lifetime τ ∈ N of a temporal graph is the
value of the latest timestep. We refer to λ as the temporal assignment of G. If t ∈ λ(e) then we call the pair
(e, t) a time-edge, and say e is active at time t. The set of all time-edges is denoted E . We abuse notation
and write λ(u, v) to mean λ((u, v)).

For a static graph G = (V,E), we denote the temporal graph (V,E, λ) by (G,λ). We also use V (G), E(G)
to refer to the vertex and edge sets of G, respectively, and use Et(G) to refer to the set of edges active at
time t, and call Gt(G) = (V (G), Et(G)) the snapshot at time t. When G is clear from the context we may
omit it. Also, we use the convention that no snapshot is empty, which guarantees τ ≤ |E|. The static graph
G↓ = (V,E) is referred to as the footprint of G.

A strict (respectively nonstrict) temporal path from a vertex u to a vertex v is a sequence of time-edges
(e1, t1), . . . , (el, tl) such that e1 . . . el is a static path from u to v and ti < ti+1 (resp. ti ≤ ti+1) for i ∈ [1, l−1].
A vertex u temporally reaches (or just “reaches”) a vertex v if there is a temporal path from u to v. The
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Fig. 1: Spread in a temporal graph from source s through snapshots. Vertices are shaded (half-shaded)
when reached from s by a strict (nonstrict) temporal path.

reachability set Ru(G) of a vertex u is the set of vertices reachable from u. When the graph is clear from
context, we may simply use Ru to refer to the reachability set of a vertex u. We say a vertex u is reachable
from a set S if for some v ∈ S, u ∈ Rv(G). A set of vertices T is temporal reachability dominated by another
set of vertices S if every vertex in T is reachable from S. Domination of and by single vertices is analogously
defined. Strict and nonstrict reachability are illustrated in Figure 1. We differentiate between strict and
nonstrict reachability by introducing a superscript < or ≤ to the appropriate operators. For example, in
Figure 1, u is in R≤

s , but is not in R<s . Note that any strict temporal path is also a nonstrict temporal path,
but the converse does not necessarily hold.

Casteigts, Corsini, and Sarkar [10] define three useful properties a temporal graph may exhibit. A tem-
poral graph is called simple if each edge is active exactly once, proper if each snapshot has maximum degree
one, and happy if it is both simple and proper. Figure 2 provides examples of the different types of temporal
graph. For simple graphs, we define the temporal assignment as λ : E → [τ ] for convenience. We also use
these three terms to describe the temporal assignment of a graph with the corresponding property. Happy
temporal graphs have the property that any nonstrict temporal path is also a strict temporal path. Part of
the utility of happy temporal graphs is that hardness results on them generalize to the strict and nonstrict
settings. We can now introduce our protagonist.
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Fig. 2: Four small examples of (non)simple and (non)proper temporal graphs.

Definition 1 (TaRDiS). In a temporal graph G, a (strict/nonstrict) Temporal Reachability Dominating Set
(TaRDiS) is a set of vertices S such that every vertex v ∈ V (G) is temporally reachable from a vertex in S
by a (strict/nonstrict) temporal path.

A minimum TaRDiS is a TaRDiS of fewest vertices in G. We emphasize that, just as every strict temporal
path is a nonstrict temporal path, every strict TaRDiS is a nonstrict TaRDiS. It is possible that the smallest
nonstrict TaRDiS is strictly smaller than the smallest strict TaRDiS; for example, in Figure 2b, there is a
nonstrict TaRDiS of size 1 (namely {u}) but every strict TaRDiS has size at least 2. We now formally define
our problems.

(Strict/Nonstrict) TaRDiS
Input: A temporal graph G = (V,E, λ) and an integer k.
Question: Does G admit a (strict/nonstrict) TaRDiS of size at most k?

The restriction to happy inputs G is a subproblem of both Strict TaRDiS and Nonstrict TaRDiS.

3



Happy TaRDiS
Input: A happy temporal graph G = (V,E, λ) and an integer k.
Question: Does G admit a TaRDiS of size at most k?

MaxMinTaRDiS is an extension of our problem in which we look to find a temporal assignment such that
no TaRDiS of cardinality less than k exists. As seen in Figure 3, scheduling social events is natural combina-
torial problem. In a similar manner to how Edge Colouring corresponds straightforwardly to scheduling
meetings between one pair of people at a time to avoid a scheduling conflict, the MaxMinTaRDiS prob-
lem can be thought of as scheduling interactions (potentially simultaneously) so that the risk of widespread
contagion is limited.

Fig. 3: xkcd#2450 [15] depicts the scheduling of social events to minimize the risk of contagion.

(Strict/Nonstrict) MaxMinTaRDiS
Input: A static graph H = (V,E) and integers k and τ .
Question: Does there exists a temporal assignment λ : E → 2τ \ {∅} such that every strict/nonstrict
TaRDiS admitted by (H,λ) is of size at least k?

Likewise, the variant of this problem in which the temporal assignment λ is required to be happy is
referred to as Happy MaxMinTaRDiS. Note this is not a subproblem of Strict MaxMinTaRDiS or
Nonstrict MaxMinTaRDiS. We will later show that Happy TaRDiS generalizes Edge Colouring
(and hence conflict-free scheduling in our earlier analogy).

Happy MaxMinTaRDiS
Input: A static graph H = (V,E) and integers k and τ .
Question: Does there exists a happy temporal assignment λ : E → [τ ] such that every TaRDiS admitted
by (H,λ) is of size at least k?

In this work, by “each variant” we refer to the Strict, Nonstrict and Happy variants of the problems.

1.2 Our Contribution
Our work highlights the complexity intrinsic to the dynamic behavior of spreading processes as soon as time-
varying elements are incorporated into natural models. At a high level, we identify the minimum lifetime τ for
which each problem is computationally hard. The existence of hardness results even with bounded lifetime
justifies the need for parameters other than τ to obtain tractability results. We provide a fixed-parameter
tractable (fpt)1 algorithm for TaRDiS with parameters τ and the treewidth2 of the footprint graph tw(G↓),
and show existence of such an fpt algorithm for MaxMinTaRDiS with parameters τ , tw(G↓), and k.

Our results relating lifetime and computational complexity are highlighted in Table 2, and our param-
eterized complexity results are summarized in Table 3. For the case of happy temporal graphs, we exactly
characterize the complexity of both TaRDiS and MaxMinTaRDiS with lifetime τ ≤ 3. Both problems

1We use fpt (lowercase) as a descriptor for algorithms witnessing the inclusion of a problem in the parameterized complexity class
FPT. A full definition is given in Section 4.

2Informally, the treewidth of a graph is a measure of its likeness to a tree. A formal definition is given in Section 4.
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τ
TaRDiS MaxMinTaRDiS

Strict Nonstrict Happy Strict Nonstrict Happy

1

NP-c
(Cor. 2)

Linear
(Lem. 4) Linear

(Lem. 4)

coNP-c
(Cor. 6)

Linear
(Lem. 18) Linear

(Lem. 18)2

NP-c
(Thm. 2)

NP-c
(Cor. 7)

3
NP-c
(Thm. 1)

∈ ΣP
2

(Lem. 15)

ΣP
2 − c

(Thm. 4)

≥ 4 ∈ coNP-h ∩ ΣP
2

(Cor. 5, Lem. 15)

Table 2: Computational complexity of our problems and its dependence on τ .

TaRDiS MaxMinTaRDiS

Parameter Strict Nonstrict Happy Strict Nonstrict Happy

∆ + τ
para-NP-h

(Cor. 2)
para-NP-h

(Thm. 2)
para-NP-h

(Thm. 1)
para-NP-h

(Cor. 6)
para-NP-h

(Cor. 7)
para-NP-h

(Thm. 4)

#LEE n/a FPT (Lem. 32) n/a

k
W[2]-h
(Cor. 2)

W[2]-h
(Thm. 2)

W[2]-h
(Cor. 3)

co-W[2]-c
(Cor. 6)

W[1]-h
(Cor. 7)

para-NP-h
(Cor. 5)

k + τ
W[2]-h
(Cor. 2)

W[2]-h
(Thm. 2)

FPT
(Lem. 33)

co-W[2]-c
(Cor. 6)

W[1]-h
(Cor. 7)

para-NP-h
(Cor. 5)

k + τ + ∆ FPT
(Lem. 33)

W[2]-h
(Thm. 2)

FPT
(Lem. 33)

FPT
(Lem. 38) ??? para-NP-h

(Cor. 5)

twG↓ + τ FPT (Thm. 7) ???

twG↓ + τ + k FPT (Thm. 7) FPT (Thm. 9)

Table 3: Summary of our parameterized complexity results. Parameters are: maximum degree of the
footprint graph ∆, lifetime τ , number of (weakly) locally earliest edges #LEE, input k, and treewidth
of the footprint graph twG↓. Problems which are W[1]-, (co-)W[2]-, or para-NP-hard are ones for
which there presumably exists no fpt algorithm.

are trivially solvable in linear time for τ ≤ 2. We show NP-completeness of Happy TaRDiS and ΣP2 -
completeness of Happy MaxMinTaRDiS when τ = 3 - even when restricted to planar inputs of bounded
degree.

For MaxMinTaRDiS, membership of NP is nontrivial since the existence of a polynomial-time verifi-
able certificate is uncertain. Indeed, the ΣP2 -completeness of Happy MaxMinTaRDiS indicates no such
certificate exists in general unless the Polynomial Hierarchy collapses. Interestingly, we show equivalence3

of Nonstrict MaxMinTaRDiS restricted to inputs where τ = 2 and Distance-3 Independent Set,
which is NP-complete [16], in Section 3.3. Given the uncertain membership of NP for the general problem,
NP-completeness of this restriction of Nonstrict MaxMinTaRDiS indicates it is possibly easier than the
unrestricted problem.

Having shown τ and planarity of the footprint graph alone are insufficient for tractability, we give
an algorithm which solves TaRDiS on trees in time polynomial in the number of time-edges |E| in the
input graph. In addition, we give an algorithm for TaRDiS on nice tree decompositions [17]. This gives us
tractability with respect to lifetime and treewidth of the footprint of the input graph combined. We also
show existence of an algorithm for MaxMinTaRDiS which is fixed-parameter tractable with respect to τ ,
k, and treewidth. This is achieved by applying Courcelle’s theorem [18].

1.3 Related Work
Reachability and connectivity problems on temporal graphs have drawn significant interest in recent years.
These have been studied in the context of network design [6, 19, 20] and transport logistics [21] (where

3Our definition of equivalence can be found in Section 3.
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maximizing connectivity and reachability at minimum cost is desired), and the study of epidemics [3, 14,
22, 23] and malware spread [24](where it is not).

In research on networks, broadcasting refers to transmission to every device. In a typical model, commu-
nication rather than computation is at a premium, and there is a single source in a graph which does not
vary with time[25]. Broadcasting-based questions deviating from this standard have been studied as well.
Namely, there is extensive study of the complexity of computing optimal broadcasting schedules for one
or several sources [26, 27], broadcasting in ad-hoc networks or time-varying graphs [28], and the choice of
multiple sources (originators) for broadcasting in minimum time in a static graph [29, 30]. Ours is the first
work to focus on the hardness of choosing multiple sources in a temporal graph to minimize the number of
sources, in an offline setting.

One metric closely related to a temporal graph’s vulnerability to contagion is its maximum reachability;
that is, the largest number k such that some vertex reaches k vertices in the graph. In Enright, Meeks
and Skerman [3] and Enright, Meeks, Mertzios and Zamaraev’s [14] works, the problems of deleting and
reordering edges in order to minimize k are shown to be NP-complete. Problems on temporal graphs are
often more computationally complex than their static counterparts [31–34]. In such cases, efficient algorithms
may still be obtained on restricted inputs. In work exploring disease spread through cattle, Enright and
Meeks find that these real-world networks naturally have low treewidth [35]. Treewidth and other structural
parameters have been used with varying degrees of success to give tractability on some of these temporal
problems [31, 33, 36, 37].

A powerful tool in parameterized complexity is Courcelle’s theorem, which gives tractability on graphs of
bounded treewidth for problems that can be represented in monadic second order logic [38]. Unfortunately,
there are many temporal problems which remain intractable even when the underlying graph is very strongly
restricted, for example when it is a path, a star, or a tree [31–34], all of which have treewidth 1. When this
is the case, it is sometimes sufficient to additionally bound the lifetime of the temporal graph in addition to
its underlying structure. This motivates our use of treewidth in combination with lifetime as parameters for
the study of our problems.

The problems we study generalize two classical combinatorial graph problems, namely Dominating Set
and Distance-3 Independent Set (D3IS). For a static graph G = (V,E), a dominating set is a set of
vertices S such that every vertex is either adjacent to a vertex in S or is in S itself, and a D3IS is a set
of vertices S such that no pair of vertices u, v ∈ S has a common neighbour w (so all pairs are at distance
at least three). The corresponding decision problems ask, for an integer k, if there exists a dominating set
(respectively D3IS) of size at most (resp. at least) k, and are W[2]- (resp. W[1]-) complete [16, 39]; that is,
even if k is fixed it is unlikely there exists an algorithm solving the problem with running time f(k) · nO(1).
However, Dominating Set can be solved in polynomial time on graphs of bounded treewidth [17, 40].

TaRDiS is exactly the problem of solving the directed variant of Dominating Set on a Reachability
Graph [41]. A Reachability Graph is also referred to as the transitive closure of journeys in a temporal
graph and is shown to be efficiently computable by Whitbeck, Amorim, Conan, and Guillaume [9]. Temporal
versions of dominating set and other classical covering problems have been well studied [11, 19, 42], however
these interpretations do not allow a chosen vertex to dominate beyond its neighbours. Furthermore, many
other problems looking to optimally assign times to the edges of a static graph have been studied [1, 3, 5].
TaRDiS also generalises Temporal Source, which asks whether a single vertex can infect every other
vertex in the graph, which is equivalent to the graph being a member of the class J 1∀ [11] mentioned
earlier. There has also been extensive research into modifying an input temporal graph (subject to some
constraints) to achieve some desired reachability objective [4, 11, 13]. Deligkas, Eiben, and Skretas [13] have
the objective of modifying λ through a delaying operation so that each vertex in a designated set reaches
all vertices in the graph; that is

⋂
u∈S Ru = V (G). Molter, Renken and Zschoche [4] consider both delay

and deletion operations to modify λ with the objective of minimizing the cardinality of the set
⋃
u∈S Ru.

Contrast these with our problem MaxMinTaRDiS, which has the objective of maximizing the minimum
cardinality of any set S satisfying

⋃
u∈S Ru = V (G).

1.4 Organization
This paper is organised as follows. We begin with classical complexity results for TaRDiS in Section 2. This
consists of some preliminary observations pertaining to our problems in Section 2.1, which also convey some
of the intuition for TaRDiS and provide tools for later technical results. Here we also consider temporal
graphs with very small lifetime, showing that Nonstrict TaRDiS and Happy TaRDiS are efficiently
solvable in temporal graphs with lifetime τ = 1 and τ = 2 respectively. In Sections 2.2 and 2.3 we show that
these are the largest lifetime for which the problem is efficiently solvable in general. Finally, in Section 2.4,
we show that TaRDiS is efficiently solvable when the footprint of the temporal graph is a tree.
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Section 3 presents classical complexity results for our MaxMinTaRDiS problems. We again begin with
some preliminary results in Section 3.1 which provide the scaffolding for our later proofs as well as some easy
bounds against which we compare our more technical results. This section allows us to draw the comparison
between our problems and the classical problems Edge Colouring and Dominating Set. The remainder
of this section includes our proofs of the contrasting results that Nonstrict MaxMinTaRDiS generalizes
D3IS (and is in NP when restricted to τ = 2), and of the ΣP2 -completeness of Happy MaxMinTaRDiS.

Having established the hardness of both problems in the general case, and provided an algorithm for
TaRDiS when the footprint graph is a tree, we turn to parameterized complexity in Sections 4 and 5. The
majority of these sections focus on the structural parameter of treewidth of the footprint graph. We give
an algorithm that solves TaRDiS on a nice tree decomposition of a graph in Section 4.3. In Section 5.1 we
show existence of such an algorithm for MaxMinTaRDiS by leveraging Courcelle’s theorem. Finally, we
give some concluding remarks and future research directions in Section 6.

2 Classical complexity results for TaRDiS
In this section, we establish NP-completeness of each variant of TaRDiS, and characterize the maximum
lifetime τ for which the problem tractable. We also give an algorithm solving the problem in polynomial time
when the footprint graph G↓ is a tree. A more general algorithm for footprint graphs of bounded treewidth
is later given in Section 4.

2.1 Containment in NP, useful tools, and small lifetime
We begin this section by showing containment of Strict, Nonstrict and Happy TaRDiS in NP and
introducing the notions of a (weakly) locally earliest edge and (weakly) canonical TaRDiS. We then show
that there always exists a canonical minimum TaRDiS in happy temporal graphs. This allows us to reduce
the number of cases we must consider when solving Happy MaxMinTaRDiS in Section 3.2. Finally, we
consider the restrictions of the lifetime to τ = 1 and τ ≤ 2, where Nonstrict TaRDiS and Happy TaRDiS
respectively are easily shown to be efficiently solvable. We later show that these are the largest values of τ
for which these problems are tractable.
Lemma 1. Each variant of TaRDiS is in NP.

Proof. The reachability set of a vertex can be computed in polynomial time by a modification of breadth-
first search. Therefore, we can verify whether a set temporal reachability dominates a temporal graph in
polynomial time.

We now introduce the notion of a canonical TaRDiS. The following results will then allow us to make
assumptions about the composition of a minimum TaRDiS when working with proper or happy temporal
graphs, or on Nonstrict TaRDiS.
Definition 2 ((Weakly) locally earliest, (weakly) canonical TaRDiS). In a temporal graph G, a time-edge
((u, v), t) is locally earliest if every other time-edge incident to either u or v is at a time t′ > t. If the weaker
constraint t′ ≥ t holds, then we call the time-edge weakly locally earliest. We say an edge (u, v) is (weakly)
locally earliest if, for some t, the time-edge ((u, v), t) is (weakly) locally earliest. A (weakly) canonical TaRDiS
consists exclusively of vertices which are incident to a (weakly) locally earliest edge.

In Figure 4b, each of {b, d}, {b, c, d} and {a, c, e} is a TaRDiS, but only the former two are canonical.

Intro to strict/nonstrict/happy

a b

c

3

2

de
1

3

(a) R≤
a ̸= R<a and R≤

e ̸= R<e .

Canonical Happy Eg

a b

c

1

2

de
1

2

(b) {a, e} is not canonical.

Planar D3IS counterexample

a b c

fed

12 3 3

21

1 2

(c) Every TaRDiS is canonical.

Fig. 4: Three temporal graphs, all admitting {a, e} as a minimum TaRDiS.

Lemma 2. In a temporal graph, there always exists a minimum weakly canonical nonstrict TaRDiS. In a
proper temporal graph, there always exists a canonical TaRDiS.
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Proof. We may assume without loss of generality that G↓ is a connected graph. Note that a weakly locally
earliest edge in a proper temporal graph is necessarily a locally earliest edge. Consequently, for the remainder
of the proof, we focus on weakly locally earliest edges.

Given a TaRDiS S, we can find a weakly canonical TaRDiS S′ by replacing vertices not incident to weakly
locally earliest edges by vertices that are. To see this, suppose x ∈ S is not incident to a weakly locally
earliest edge. Then there exist vertices u, v ∈ V (G) and time-edges ((x, u), t), ((u, v), t′) such that t ≥ t′.
Suppose that t is the earliest time that this is true for. Then, since all vertices reachable from x must be
temporally reachable from v by a path appending the time-edges ((v, u), t′), ((u, x), t), Rx ⊆ Rv. Therefore,
we can swap x for v without losing domination of the whole graph. We perform this replacement repeatedly
for every such x until we obtain a set of vertices each incident to at least one weakly locally earliest edge.
This is precisely a weakly canonical TaRDiS.

This gives us a result that mirrors Lemma 54 from [43].
Corollary 1. The number of weakly locally earliest edges upper-bounds the size of a minimum nonstrict
TaRDiS.

We now show that the classical problem Dominating Set is a special case of Strict TaRDiS. Dom-
inating Set is known to be NP-complete, even on planar graphs with maximum degree ∆ = 3 (hence
para-NP-hard with respect to ∆) [44], and W[2]-hard with respect to the size of the dominating set [39].
Lemma 3. For all positive integers τ and instances (G, k) of Dominating Set, a temporal graph G of
lifetime τ can be found in linear time, where (G, k) is a yes-instance of Strict TaRDiS if and only if (G, k)
is a yes-instance of Dominating Set.

Proof. The construction of G can be seen in Figure 5. We append a path P of length τ − 1 to an arbitrary
vertex v in G. The temporal assignment of G is defined as follows: all edges in E(G) are assigned time 1,
and the edges in P are assigned times in ascending order from v. It is clear that there exists a dominating
set of cardinality k in G if and only if there exists a strict TaRDiS of cardinality k in G.

We note that, in our construction, k is unchanged and the maximum degree of G↓ is bounded by ∆(G)+1;
giving us the following corollary.
Corollary 2. Strict TaRDiS is NP-complete, W[2]-hard with respect to k, and para-NP-hard with respect
to ∆ + τ , where ∆ is the maximum degree of the footprint graph and τ is the lifetime of the temporal graph.

Dominating set of larger lifetime.

a

b

c

u

v

w

1

1

1

1

1

1

1

1
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u

v

w

v2 v3 vτ· · ·
2 3

(G, k) ∈ Dominating Set (Gτ , k) ∈ Strict TaRDiS⇐⇒

Fig. 5: Illustration of the construction used to reduce from Dominating Set to Strict TaRDiS with
arbitrary lifetime τ .

We now consider the problems Nonstrict TaRDiS and Happy TaRDiS with very restricted lifetimes.
Lemma 4. Nonstrict TaRDiS can be computed in linear time when τ = 1. When τ ≤ 2, Happy TaRDiS
is solvable in linear time.

Proof. If every edge is active at the same time, every vertex can be temporally reached by a nonstrict path
from any vertex in the same connected component. Therefore, if τ = 1, we find a minimum TaRDiS by
choosing exactly one vertex in every connected component of the graph.

If a temporal graph is happy and the lifetime of the graph is at most 2, the footprint of the graph must be
2-edge colourable, and so consist of only paths or even cycles. Any TaRDiS must include every vertex which
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has no neighbours. Then, for any paths, we choose a leaf and add its neighbour to the TaRDiS. Following this,
we work along the path adding an endpoint of an edge if it is active before the edge previously considered.
We use a similar method on even cycles by simply picking an arbitrary vertex v incident to an edge in E1(G)
to be in the TaRDiS. From here, we find the subgraph induced by removing the vertices reachable from v,
giving us a path to which we can apply the previous procedure.

2.2 NP-completeness of Happy TaRDiS with lifetime 3
Above, we establish that Happy TaRDiS can trivially be solved in linear time when the input has lifetime
τ ≤ 2 by Lemma 4. Here we show that the problem immediately becomes NP-complete for inputs where
τ = 3, even when G↓ is planar.

We give a reduction from the problem Planar exactly 3–bounded 3–SAT, which asks whether the
input Boolean formula ϕ admits a satisfying assignment. We are guaranteed that ϕ is a planar formula in 3-
CNF (a disjunction of clauses each containing at most 3 literals) with each variable appearing exactly thrice
and each literal at most twice. This problem is shown to be NP-hard by Tippenhauer and Muzler [45].

2.2.1 Construction
Let ϕ be an instance Planar exactly 3–bounded 3–SAT consisting of clauses {c1, . . . , cm} over variables
X = {x1, . . . , xn}. Let l2i (resp. l2i−1) denote the positive (resp. negative) literal for variable xi, and l2n+1
denote the special literal ⊥, which is always False. We rewrite every 2-clause of ϕ to include the special
literal ⊥ (e.g. the clause (xi ∨ ¬xj) becomes (xi ∨ ¬xj ∨ ⊥) then (l2i ∨ l2j−1 ∨ l2n+1)). Let ϕ′ denote the
new formula obtained by doing this. Note that ϕ′ admits a satisfying assignment (in which ⊥ evaluates to
False) if and only if ϕ admits a satisfying assignment.

Happy TaRDiS Figs
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q3j

q4jq5j

q6j

3

1
v

1
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2
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p1i
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Fig. 6: Gadgets and adjacent literal vertices in the reduction from Planar exactly 3–bounded 3–SAT
to Happy TaRDiS. Left: the variable gadget for xi, which appears twice negatively. Right: the clause gadget
for the clause cj .

In this construction E(G) = E1 ∪ E2 ∪ E3; λ is implicitly defined on this basis. We introduce literal
vertices as follows. Iterate over ϕ′: at the ath appearance of each literal li, create two new vertices lai and
lai , and let (lai , lai ) ∈ E3. We refer to the set of all literal vertices as L. We say the vertex lai belongs to the
clause cj in which li appears for the ath time.

For each variable xi, we introduce vertices Vi = {T 1
i , T

2
i , F

1
i , F

2
i , v

1
i , v

2
i , ai, bi}, connected in a cycle

labeled as shown in Figure 6. Specifically, we have (T 1
i , T

2
i ), (F 1

i , F
2
i ), (v1

i , v
2
i ) ∈ E1, (ai, v1

i ), (bi, v2
i ) ∈ E2,

and (ai, T 1
i ), (bi, F 1

i ) ∈ E3. Then, for each positive (resp. negative) literal vertex la2i (resp. la2i−1), we add
(la2i, T ai ) to E2.

Every three literals vertices u, v, w belonging to the same clause cj are connected with the clause gadget as
shown in Figure 6. Namely, we introduce the vertices Qj = {q1

j , . . . , q
6
j }, with (q1

j , q
2
j ), (q3

j , q
4
j ), (q5

j , q
6
j ) ∈ E3,

(q2
j , q

3
j ), (q4

j , q
5
j ), (q6

j , q
1
j ) ∈ E1, and (q1

j , u), (q3
j , v), (q5

j , w) ∈ E2. If, for example, clause cj = (l5 ∨ l17 ∨ l20) is
the first appearance of l5 and l20 and the second appearance of l17 in Φ, then u = l15, v = l217 and w = l120.

Lastly, we let k = 2m+ 2n. This concludes our construction of the Happy TaRDiS instance (G, k).
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2.2.2 Properties of the construction
We will show that G admits a TaRDiS S of size k if ϕ is satisfiable, and that any TaRDiS is of size at least
k + 1 otherwise. It is worth noting that our construction preserves planarity of ϕ. That is, G↓ is a planar
graph.

We now show that the existence of a TaRDiS of size at most k implies that of a satisfying assignment.
Lemma 5. Any canonical TaRDiS of G includes at least 2 vertices from each variable gadget and at least
2 vertices from each clause gadget, and so has size at least k.

Proof. Recall that a canonical TaRDiS S by definition is incident only to locally earliest edges. In the case
of G, none of the literal vertices can belong to S, i.e. S ⊆ V \L where L is the set of literal vertices. For each
variable xi and clause cj , no vertex from Vi reaches any vertex from Qj , and vice versa. Note that, for all
j ∈ [m], every vertex in Qj reaches exactly 4 other vertices in Qj , for example Rq3

j
= {q1

j , q
2
j , q

3
j , q

4
j }. Thus,

|S ∩Qj | ≥ 2, else S would not reach every vertex in Qj . Similarly, for all i ∈ [n], every vertex in Vi reaches
at most 6 other variable gadget vertices, so |S ∩ Vi| ≥ 2.

Lemma 6. If G admits a TaRDiS S of size k then ϕ is satisfiable.

Proof. Suppose G admits a TaRDiS S of size at most k. We first apply Lemma 2, which allows us to assume
that S is canonical. Then, by Lemma 5, we have that S is of size exactly k, and that for all i and j, |S∩Vi| = 2
and |S ∩Qj | = 2.

We show that a satisfying assignment X to the variables of ϕ can be obtained from S. For each variable
xi, assign xi = True if T 1

i or T 2
i ∈ S, and xi = False otherwise. Note that, since S is a canonical TaRDiS,

ai and bi are not in S. Hence F 1
i ∈ S or F 2

i ∈ S if and only if xi = False in our assignment. Suppose for
contradiction there is some clause cj which is not satisfied. Then, under this assumption, the gadget cj is
incident to three literal vertices {u, v, w}, none of which are reached from their respective variable gadgets.
Since S is a TaRDiS, q1

j or q6
j is in S (as u must be reached from within Qj = {q1

j , . . . , q
6
j }), and likewise q2

j

or q3
j and q4

j or q5
j are in S (as v and w respectively must be reached from within Qj). Hence |Qj ∩ S| ≥ 3.

By applying Lemma 5 we get that |S| ≥ 2m+ 2n+ 1 = k + 1, a contradiction. Hence X must satisfy ϕ.

Lemma 7. If ϕ is satisfiable then G admits a TaRDiS S of size k.

Proof. Given a satisfying assignment to ϕ, we construct S as follows. We start with S = ∪i{v2
i }. Then if

xi = True (respectively xi = False) under the assignment, add T 1
i to S (resp. F 1

i ∈ S). Now S has size 2n
and a vertex in S reaches the literal vertices for every literal set to True in the assignment, but none of the
clause gadget vertices.

For each clause cj , there is some literal in cj which is assigned True, and hence at least one literal vertex
incident to Qj is reached from the corresponding variable gadget. Denote this literal vertex u, and the other
literal vertices incident to Qj (which may or may not be reached from their respective variable gadgets) v
and w, respectively. We add the neighbours of v, w in Qj to S. That is, S = S ∪ ((N [v] ∪N [w]) ∩Qj). Now
S has size 2n+ 2m and reaches: all variable gadget vertices; all clause gadget vertices; and all literal vertices
(since every literal vertex is incident to a clause gadget). Hence S is a TaRDiS of size exactly k.

Theorem 1. Happy TaRDiS is NP-complete, even restricted to instances where the footprint of the
temporal graph is planar and its lifetime is 3.

Proof. We have membership of NP from Lemma 1. The construction above produces an instance (G, k)
of Happy TaRDiS from an instance ϕ of Planar Exactly 3–Bounded 3–SAT in polynomial time.
Combining Lemmas 6 and 7 shows that G admits a TaRDiS of size at most k if and only if ϕ is satisfiable.

This result generalises to both Strict and Nonstrict TaRDiS, giving us NP-completeness of all
variants with bounded lifetime and a planar footprint.

2.3 NP-completeness of Nonstrict TaRDiS with lifetime 2
We show hardness of Nonstrict TaRDiS by reducing from Set Cover, which is known to be NP-complete
[46] and W[2]-hard with respect to the parameter k [17]. The Set Cover problem is defined as follows.

Set Cover
Input: Universe U = {x1, . . . xn}, a family S = {si|si ⊆ U} of subsets in U and an integer k.
Question: Is there a set {si∈I} with at most k elements such that ∪i∈Isi = U?
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Given an instance of Set Cover, we build a temporal graph G with vertex set V (G) = U ∪S ∪{aji | ∃xi ∈
U , sj ∈ S : xi ∈ sj}. To this vertex set we add the edges:

• connecting sj in a path at time 1 to all aji for all i such that aji exists;
• connecting xi in a path at time 2 to all aji for all j such that aji exists;
• (sj , sj+1) at time 2 for all j ∈ [1,m− 1].

A sketch of G can be found in Figure 7. Note that the maximum degree of G is 4. We keep the same value
of k in our construction; that is, we construct an instance (G, k) of Nonstrict TaRDiS from the instance
(U ,S, k) of Set Cover.
Lemma 8. Any TaRDiS in G can be reduced to a TaRDiS of the same or smaller size in V (G) ∩ S.

Proof. Suppose there is a TaRDiS S in G containing a vertex v ∈ V (G) \ S. We have two cases:

1. v = xi for some 1 ≤ i ≤ n, or
2. v = aji for some 1 ≤ i ≤ n and 1 ≤ j ≤ m.

In the first case, we can swap xi for any neighbour (or delete xi if N [xi] ⊂ S). This must be a vertex aji
for some 1 ≤ j ≤ m. Since the reachability set of aji is a strict superset of that of xi, S remains a TaRDiS
when xi is replaced by its neighbour. This leaves us with case 2. The reachability sets of aji are equal to
the reachability set of sj for all aji ∈ V (G) \ (U ∪ S). Therefore, we can replace vertices in S with those
corresponding to sets in S without changing the reachability set of the TaRDiS.

Lemma 9. The temporal graph G admits a TaRDiS of cardinality k if and only if (U ,S, k) is a yes-instance
of Set Cover.

Proof. Suppose there is a set {sj∈I} of cardinality k which is a set cover of U . Then we claim the same set
S is a TaRDiS in G. If an element xi is in the set sj , then by construction of G, there is a path from sj to xi
via aji . Furthermore, all vertices sj′ for 1 ≤ j′ ≤ m are temporally reachable from any sj . Since all xi appear
in at least one of {sj∈I}, we know that all xi and all sj are temporal reachability dominated by S = {sj∈I}.
What remains to check is that all aji are also reached by a vertex in S. Each aji is connected to xi at time
2. Therefore, since all xi are reached at time 2 from S, each aji must also be temporally reachable from S.

Now suppose that there is a TaRDiS S of cardinality k of G. By Lemma 8, we can assume that S ⊆ S.
Observe that there is a nonstrict temporal path from a vertex sj reaches a vertex xi if and only if xi ∈ sj .
Hence, a vertex xi is temporally reachable from some vertex in S if and only if a set sj containing xi is in
S. Since every xi is reachable from some vertex in S, then, S is a set cover.

We note that since we use the same input k for both problems, Nonstrict TaRDiS is W [2]-hard with
respect to k. This proves the following theorem.
Theorem 2. For every lifetime τ ≥ 2 Nonstrict TaRDiS is NP-complete and W[2]-hard with respect to
k. This holds even on graphs with maximum degree 4.

We now extend our construction to obtain W[2]-hardness of Happy TaRDiS. Consider the following
construction for a happy temporal graph G′. Begin with the temporal graph G as constructed earlier in
Figure 7. Then, for each i, add edges such that the set {si} ∪

⋃
j a

i
j forms a clique. For each j, we also add

edges such that the set {xj} ∪
⋃
i a
i
j forms a clique. Then we order all time-edges arbitrarily such that all

edges in each clique containing edges formerly in E1 are active before the edges in each clique containing all
time-edges formerly in E2. This concludes the description of G′. Observe that G′ is a happy temporal graph,
since each snapshot contains just one edge.
Lemma 10. The temporal graph G′ admits a TaRDiS of cardinality k if and only if (G, k) is a yes-instance
of Happy TaRDiS.

Proof. We show that a vertex u temporally reaches a vertex v in G if and only if u also reaches v in G′.
Thus, proving that G′ admits a TaRDiS of cardinality k if and only if G admits a TaRDiS of cardinality k.

Suppose we have a path p from a vertex u to a vertex v in G. We have two cases; namely, the edges in
the path are assigned the same time in G or they are not. In the former, there must still be a (one-edge)
path from u to v in G′ since we have added edges such that all connected components in either snapshot of
G form a clique. In the latter, we can break p into a path at time one p1 and a path p2 at time two. These
paths can each be replaced by an edge as in the case where p consists of edges which occur at the same time.
Therefore, for every path in G, there exists a path with the same starting and terminal vertex in G′.

Now suppose we have a path p′ in G′ from u′ to v′. Since we have cliques for each connected component
in the snapshots of G, the path consisting of fewest edges in G′ from u′ to v′ must consist of at most 2 edges.
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Fig. 7: Sketch for the reduction from Set Cover to Nonstrict TaRDiS

Suppose without loss of generality that p′ is the shortest path from u′ to v′. If p′ consists of a single edge,
then u′ and v′ must be in the same connected component of G, thus there exists a path from u′ to v′ in G.
Now suppose that p′ consists of two edges. We know that v′ and u′ are not adjacent in G′, else p′ would not
be the shortest path from u′ to v′. Therefore, u′ and v′ must be members of two different cliques in G′. Let
w′ be the vertex adjacent to both u′ and v′ which p′ traverses. Then, since u′ and w′ share an edge which
is earlier than the edge (w′, v′), they must be in the same connected component of G1. Similarly, w′ and v′

must be in the same connected component of G2. Therefore, there is a path from u′ to v′ in G. Hence, a
vertex u temporally reaches a vertex v in G if and only if u also reaches v in G′.

Corollary 3. Happy TaRDiS is NP-complete and W[2]-hard with respect to k.

2.4 Algorithm for TaRDiS on Trees
In this section, we show that each variant of TaRDiS can be solved in polynomial time on inputs which
are trees, even when k and lifetime are unbounded. We introduce some preliminary notions needed for the
algorithm.

In this section, we deal with non-simple temporal graphs; each edge e ∈ E(G) may appear several times.
We define the functions λmin : E → [τ ] and λmax : E → [τ ] which return the earliest and latest appearance
of an edge, respectively.

In the following we refer to rooted trees. A rooted tree is a tree T = (V,E) with a special vertex r; the
root. A vertex w is a descendant of a vertex v if v lies on the unique path from w to r. We refer to the vertices
neighbouring v which are descendants of v as its children. If a vertex w is a child of v, then v is its parent.
Similarly, the parent of a parent vertex is referred to as a grandparent. The subgraph induced by a vertex v
and its descendants is referred to as the subtree rooted at v. The input of the algorithm is a rooted temporal
tree G. By this, we mean a temporal graph whose footprint G↓ is a rooted tree. We define the function C(p)
to return the set of children for a parent vertex p.

2.4.1 Intuition
The algorithm operates as follows. We initialise a counter k and two empty sets. The first set S will become
a TaRDiS if a TaRDiS of size k exists. The second set M is a set of vertices which are temporally reachable
from those in S or will be temporally reachable from a later vertex added to S. Roughly, these are the
vertices we do not need to worry about. We refer to them as marked. Vertices not in M will be referred to
as unmarked. We refer to the distance of a vertex in the tree from the root as its depth.
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We work from the leaves of G to the root r. At each iteration, we either mark vertices or reduce the
number of appearances of an edge. We continue until the unmarked graph is a star or empty. The star graph
is the complete bipartite graph K1,k. Its central vertex is a vertex incident to every edge the graph if k ≥ 1,
and is the sole vertex in the graph otherwise.

If a vertex v with parent p and grandparent g is reachable from its grandparent using the earliest time
on the edge (v, p) and the latest appearance of (p, g), it will be reached by a vertex in S if its parent is.
Therefore, we can mark that vertex. If a vertex v is not marked and also not temporally reachable from its
grandparent, we must add a vertex in N [v] to S. We solve Strict TaRDiS or Nonstrict TaRDiS using
the variable s which depends on the Boolean flag Strict.

Algorithm: TaRDiS on Trees
Input: A rooted temporal tree G and a Boolean flag Strict.
Output: A TaRDiS S of minimum size.

1. Initialise S = ∅,M = ∅, and s = 0.
2. If Strict:

(a) Set s = 1.
3. While M ̸= V (G):

(a) If G \M is a star:
(i) Add the central vertex to S and return S.

(b) Denote L the set of vertices in V (G) \M at maximum depth.
(c) Let p be the parent of an arbitrary vertex from L.
(d) Choose the vertex l ∈ C(p) \M which minimizes λmax(p, l).
(e) Let g be the parent of p (and hence the grandparent of l).
(f) While l is not in M :

(i) If λmax(l, p) < λmin(p, g) + s:

(A) Add p to S.
(B) Find Rp.
(C) Add Rp to M : M = M ∪Rp.

(ii) Else, if λmax(l, p) ≥ λmax(p, g) + s:

(A) Do M := M \ {p} (note this does nothing if p /∈ M already).
(B) Add all children of p to M .

(iii) Else, update λ: do λ(p, g) = λ(p, g) \ {λmax(p, g)}.
4. Return S.

Lemma 11. The algorithm TaRDiS on Trees always terminates in time O(|E|2), where E is the set of
time-edges in G.

Proof. The algorithm operates by adding vertices to a set S until the whole tree is marked. Observe that
each iteration of the inner while-loop (step: 3f) results in either an increase in size of the set M of marked
vertices or removal of an appearance of the time-edge between parent and grandparent vertices of the vertex
in question. Note that, if there is only one appearance of the edge between parent and grandparent vertices,
a vertex must be added to M . Therefore, there are at most |E| iterations of the inner while loop. Computing
Ru is achievable in linear time when G↓ is a tree. Thus, each iteration can be completed in time linear in
the number of time-edges. Hence, the algorithm terminates in time O(|E|2).

We let Tv denote the subtree rooted at a vertex v.
Lemma 12. For any vertex v added to the set S by the algorithm TaRDiS on Trees, S ∩ Tv is a TaRDiS
of the subtree Tv rooted at v.

Proof. We show that all descendants of v are temporal reachability dominated by S ∩ Tv. Note that the
children of v are necessarily temporal reachability dominated by S since they are adjacent to the vertex v.
Before v is added to S, it must have a child l which is an unmarked vertex at maximum depth. Therefore,
all vertices deeper in the subtree must be in M .

We will show that all vertices in M ∩ Tv are temporally reachable from a vertex in S. We claim that, if
a vertex u is in M ∩ Tv but not temporally reachable from S \ {v}, then there is a temporal path from v to
u. This is the because edge from u to its parent pu is active strictly later (or possibly at the same time in
the nonstrict case) than the last appearance of the edge from pu to the grandparent vertex gu. Otherwise, u
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would not be marked. Note that this implies that neither gu nor pu are temporally reachable from a vertex
in S \ {v}; otherwise u would also be reachable by appending the edges (gu, pu) and (pu, u) to such a path.

This either gives us an ancestor of u which is not in M , or an ancestor of u in M which is not temporally
reachable from a vertex in S \ {v}. If the latter is true, we repeat this logic until we reach an ancestor w
which is not in M . This must be either v or a child of v since l is an unmarked vertex of maximum depth.
For all descendants w′ of w that are u or ancestors of u, we have shown that if the parent of w′ is temporally
reached by a path from an ancestor, then w′ must be too. Since v is either w or the parent of w, u and all
of its ancestors in Tv must be temporally reachable from v and thus S ∩ Tv is a TaRDiS for Tv.

Lemma 13. For any vertex v added to the set S by the algorithm TaRDiS on Trees, S ∩ Tv is a minimum
TaRDiS of the subtree Tv rooted at v.

Proof. Suppose for contradiction that such a vertex v ∈ S and set S′ exist where S′ ⊆ Tv is a TaRDiS of Tv
and strictly smaller than S ∩ Tv. We assume without loss of generality that S′ is a minimal TaRDiS.

Consider the set S′ ∩ S. If this is non-empty, let R be the union of reachability sets of vertices in S′ ∩ S.
Let T ′ be the subgraph of Tv induced by removing all vertices in R \ (S′ ∩ S). Since we have assumed that
|S′| < |S|, there must be a connected component T ′′ of T ′ where |T ′′ ∩ S′| < |T ′′ ∩ S|.

Let u ∈ T ′′ ∩ S be the vertex in (T ′′ ∩ S) \ S′ of maximum depth. Observe that u is not a leaf in T ′′,
otherwise it would not have an unmarked child before its addition to S by the algorithm. Denote by c the
child of u which minimises λmax(u, c). Since u is added to S, we must have that λmax(c, u) < λmin(u, p) + s
where p is the parent of u. Therefore, the path consisting of time-edges ((u, p), λmin(u, p)), ((c, u), λmax(c, u))
is not a valid temporal path. We now have two cases to consider. The case where appearances of the edge
(c, u) have been deleted and the case where no appearances of the edge cu have been deleted by the algorithm.

If no appearances of (u, c) have been removed by the algorithm, then c is not temporally reachable from
p or any ancestors of p. Since we know that u is in S and not S′, c must be temporally reachable from a
descendant c′ of u in S′ \ S. We claim that we can swap c′ with u without reducing the reachability set of
vertices in S′. Suppose otherwise; that there is a vertex w no longer reached by S′. Since we assumed that
u was a vertex of maximum depth in S′ \ S, this contradicts that S ∩ Tu is a TaRDiS of Tu. Thus, this
contradicts Lemma 12.

Now suppose that there are appearances of the edge (u, c) which have been removed by the algorithm.
Then, a child of c must have been an unmarked vertex of maximum depth. Call this vertex g. This implies
that g ∈ T ′′. If the algorithm were to add c to S when g is unmarked, then c would not be an unmarked
vertex of maximum depth in any later iterations. Before deletion of appearances of (u, c), we must have that
λmax(g, c) < λmax(c, u) + s and λmax(g, c) ≥ λmin(c, u) + s. Following deletion of the appearance λmax(c, u)
(potentially multiple times), λmax(g, c) ≥ λmax(c, u) + s and λmax(c, u) < λmin(u, p) + s. Therefore, there
is no temporal path from p or an ancestor of p to g. Since we know that u is in S and not S′, g must be
temporally reachable from a descendant g′ of u in S′ \ S. We claim that we can swap g′ with u without
reducing the reachability set of vertices in S′. Suppose otherwise; that there is a vertex w no longer reached
by S′. Since we assumed that u was a vertex of maximum depth in S′ \ S, this contradicts that S ∩ Tu is a
TaRDiS of Tu. Thus, this also contradicts Lemma 12.

In both cases, we have shown that there is a vertex in S′ \S that can be replaced by u without reducing
the reachability set of vertices in S′. We repeat this with the vertex at maximum depth in T ′′ ∩ S \ S′ until
either we contradict the assumption that S′ is a TaRDiS of Tv, or obtain S = S′; contradicting our assertion
that |S′| < |S|. Therefore S is a minimum TaRDiS of Tv.

Lemma 14. The set S output by the algorithm TaRDiS on Trees is a minimum TaRDiS of G.

Proof. If the root r of G is in S as output by the algorithm, then combining Lemmas 12 and 13 gives us the
desired result. Suppose r is not in S. Then, rooting the tree at the final vertex added to S gives the result
without changing the vertices in S.

This gives us the following theorem and corollary.
Theorem 3. When the footprint of the graph is a tree, TaRDiS is solvable in O(|E|2) time.

We obtain a running time dependent only on the number of vertices for simple temporal graphs, where
|E| = |E(G↓)| = V (G) − 1.
Corollary 4. When the input temporal graph is simple and the footprint of the graph is a tree, TaRDiS is
solvable in O(n2) time.

In Section 4, we give a more general algorithm which solves any variant of TaRDiS on a nice tree
decomposition of the underlying graph. When the footprint graph is a tree, we have treewidth 1. Our
algorithm for TaRDiS on trees runs faster than the tree decomposition algorithm (whose runtime also grows
with τ), so this does not consume Theorem 3.
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3 Classical complexity results for MaxMinTaRDiS
We now shift our focus to MaxMinTaRDiS, where the objective is to find a temporal assignment which
precludes the existence of a small TaRDiS. For each variant, we characterize the minimum lifetime such
that the problem becomes intractable. Intriguingly, the expected leap in complexity to ΣP2 is only seen with
Happy MaxMinTaRDiS.

We give a full definition of ΣP2 in Section 3.2. It is widely believed that ΣP2 is a strict superclass of NP
∪ coNP. In this sense, Happy MaxMinTaRDiS is a harder problem than both Strict MaxMinTaRDiS
(which is coNP-complete), and all TaRDiS variants (which are NP-complete as shown in Section 2). We show
Nonstrict MaxMinTaRDiS is at least as hard as all TaRDiS variants and at most as hard as Happy
MaxMinTaRDiS, but leave open its exact complexity. Interestingly, this is achieved by proving that the
well-studied Distance-3 Independent Set problem is a subproblem of Nonstrict MaxMinTaRDiS.

3.1 Containment in ΣP
2 , useful tools, and small lifetime

Here we give some preliminary complexity results for each variant of MaxMinTaRDiS. We begin by show-
ing that they are all contained in ΣP2 . We then show that we need only consider simple temporal assignments
when trying to solve MaxMinTaRDiS. Finally, we draw comparisons between Happy MaxMinTaRDiS
and Strict MaxMinTaRDiS and the classical problems Edge Colouring and Dominating Set
respectively, which allow us to show NP-hardness and coNP-hardness of the respective problems.
Lemma 15. Each variant of the problem MaxMinTaRDiS is contained in ΣP2 .

Proof. (Strict/Nonstrict/Happy) MaxMinTaRDiS admits a triple (H, k, τ) as a yes-instance if and
only if there exists a (happy) temporal assignment λ : E(H) → τ such that for every (Strict/Nonstrict)
TaRDiS S of (H,λ), |S| ≥ k. It follows that a formula Φ over variable sets X and Y can be produced such
that (H, k, τ) is a yes-instance if and only if there exists an assignment to the variables in X such that
for every assignment to the variables of Y , Φ(X,Y ) is True. We refer the reader to Section 3.2 for a more
detailed construction of such a Boolean formula.

We begin with the observation that we need only consider simple temporal assignments for the input
graph.
Lemma 16. Let (H, k, τ) be a yes-instance of MaxMinTaRDiS. Then there exists a simple temporal
assignment λ : E → [τ ] such that the cardinality of the minimum TaRDiS on (H,λ) is at least k.

Proof. We begin by supposing, for a contradiction, that (H, k, τ) is an instance of MaxMinTaRDiS such
that any optimal solution is non-simple. Denote such a solution by λ∗. By our assumption, there is at least
one edge e∗ ∈ E(H) such that |λ∗(e∗)| > 1. Let λ be a simple temporal assignment such that, for all edges
e ∈ E(H), λ(e) ∈ λ∗(e). Then, under λ, the reachability set of any vertex v ∈ V (H) is a subset of the
reachability set of v under λ∗. Therefore, a minimal TaRDiS of (H,λ) must be at most the cardinality of a
minimal TaRDiS of (H,λ∗). Since λ is a simple temporal assignment, we have contradicted our assumption.
Thus, for every instance of MaxMinTaRDiS, there exists an optimal solution which is simple.

Lemma 17 ([10]). A static graph H admits a happy temporal assignment λ : E(G) → [τ ] if and only if H
is τ -edge colourable.

Proof. To see this, we assign each of the times a colour. Then, if the graph cannot be τ -edge coloured,
we cannot assign times to the edges such that no two adjacent edges share a time. Furthermore, if we can
give H a happy temporal assignment, then the corresponding assignment of colours to edges is a proper
edge-colouring.

Happy MaxMinTaRDiS restricted to instances with k = 0 asks only if there exists a happy assignment
λ with lifetime τ for the input graph G. This is equivalent to the Edge colouring problem with τ colours.
Edge Colouring is NP-complete, even when the number of colours is 3 [47].
Corollary 5. Happy MaxMinTaRDiS is NP-hard for any τ ≥ 3, even when k = 0.
Lemma 18. Nonstrict MaxMinTaRDiS can be computed in linear time when τ = 1. When τ ≤ 2,
Happy MaxMinTaRDiS is solvable in linear time.

Proof. If every edge is active at the same time, we have no choice in the temporal assignment. As shown in
Lemma 4, we can find the size of the minimum nonstrict TaRDiS in linear time by counting the number of
connected components.

As stated in Lemma 4, the footprint of a happy temporal graph with lifetime 2 necessarily consists of
disconnected paths and even cycles. In paths and cycles of even length, there is only one happy temporal
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assignment up to symmetry. In odd paths, the optimal ordering is that wherein both edges incident to leaves
are assigned time 1. This forces one of the endpoints of these edges to be in a TaRDiS, which is not the case
if they are assigned time 2.

Lemma 19. For any static graph H and k ∈ N+, (H, k) is a yes-instance of Strict MaxMinTaRDiS if
and only if (H, k − 1) is a no-instance of Dominating Set.

Proof. We first show that the constant function λ is an optimal one (i.e. one which maximizes the size of the
minimum TaRDiS for (H,λ)). Suppose otherwise, that we have an optimal temporal assignment λ′ where
there exist edges e, e′ such that λ′(e) ̸= λ′(e′). Then, under a temporal assignment λ(e) = c for all edges
e ∈ E and c ∈ N, all vertices have reachability sets whose cardinality are bounded above by the size of their
reachability set under λ′. Therefore a minimum TaRDiS under λ must be at least the size of a minimum
TaRDiS under λ′. Applying Lemma 3, we see that (H, k) is a yes-instance of Strict MaxMinTaRDiS if
and only if (H, k − 1) is a no-instance of Dominating Set.

Corollary 6. Strict MaxMinTaRDiS is coNP-complete, coW[2]-complete with respect to k, and para-
NP-hard with respect to ∆ + τ .

3.2 ΣP
2 -completeness of Happy MaxMinTaRDiS with lifetime 3

As stated in Corollary 5, Happy MaxMinTaRDiS is trivially NP-hard even for lifetime τ = 3. Lemma 15
gives us that the problem is in ΣP2 . We characterize the problem’s complexity exactly, showing it is ΣP2 -
complete.
Definition 3 (ΣP2 - adapted from [48], Definition 5.1). ΣP2 is the set of all languages L for which there
exists a polynomial-time Turing Machine M and a polynomial q such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗.
Arora and Barak [48] note that NP∪co-NP ⊆ ΣP2 and that ΣP1 = NP. The complement of a ΠP

i -complete
problem is necessarily ΣPi -complete [49].

We begin by presenting its problem Restricted Planar Satisfiability, which is ΠP
2 complete [50].

Restricted Planar Satisfiability (RPS)
Input: An expression of form (∀X)(∃Y )Φ(X,Y ) with Φ a CNF formula over the set X ∪ Y of variables.
Each clause contains exactly 3 distinct variables, each variable occurs in exactly three clauses, every
literal appears at most twice, and the graph GΦ is planar.
Question: Is the expression true?

We also introduce the complement problem co-RPS, which we will reduce from.

co-Restricted Planar Satisfiability (co-RPS)
Input: An expression of form (∃X)(∄Y )Φ(X,Y ) with Φ a CNF formula over the set X ∪ Y of variables.
Each clause contains exactly 3 distinct variables, each variable occurs in exactly three clauses, every
literal appears at most twice, and the graph GΦ is planar.
Question: Is the expression true?

Lemma 20. The problem co-RPS is ΣP2 complete.

Proof. Gutner shows Restricted Planar Satisfiability (RPS) to be ΠP
2 -complete in [50]. Note that

they do not state the restriction that each literal appears at most twice in the lemma stating their result,
but this can be seen from their construction.

3.2.1 Intuition
We can imagine problems in ΣP2 as games with two players. In co-RPS the first player chooses an assignment
to variables in X, then the second player chooses an assignment to the variables in Y . If the resulting
assignment to X ∪ Y satisfies Φ then the second player wins; otherwise the first player wins. Analogously,
in Happy MaxMinTaRDiS the first player chooses a happy temporal assignment λ with lifetime τ for the
edges of G, then the second player chooses a set S of vertices in G of size at most k − 1. If S is a TaRDiS
of (G,λ) then the second player wins; otherwise the first player wins.
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We perform this reduction by creating gadgets which force the first player to choose a function λ which
is nice. Essentially, λ must assign specific times to certain edges. This means that if the first player does
not do this, the second player can always win. We can then replicate some techniques from the proof of
Theorem 1 to encode clauses being satisfied. The choice of TaRDiS by the second player then encodes a
truth assignment to variables in Y . By allowing a small amount of freedom in the choice of λ, we allow the
first player to encode a truth assignment to the variables of X. We now give the formal construction.

3.2.2 Construction
Given an instance (Φ, X, Y ) of co-RPS, we will produce an instance (G, k, τ = 3) of MaxMinTaRDiS.
The number of clauses in Φ is denoted by m. We label the number of variables in X (respectively Y ) with
nX (resp. nY ). The total number of variables is n. Note that 3m ≥ n ≥ m, so the size of the co-RPS
instance is linear in n. Further, we denote X = {x1, . . . , xnx} and Y = {ynx+1, . . . , ynx+ny }. We say that
the literal l2i (respectively, l2i−1) is the positive (resp., negative) literal for variable xi if i ≤ nx, and the
positive (resp. negative) literal for variable yi if nx < i ≤ ny.

We now describe the construction of G and k. The construction of our gadgets is intended to guarantee
that any optimal temporal assignment λ will have certain properties. First, we define the Uncovered 2-
Gadget, Uncovered 3-Gadget, and Covered 2-Gadget. Each of these is treated in our construction as a vertex
of degree one. The construction for each of these makes use of large values α and β. Let β = 100n and
α = 600nβ + 600n+ 2. In particular we require that α >> β >> n, β is even, and α ≡ 2 mod 12.

3.2.3 Uncovered 2-Gadget (U2G)
This construction is illustrated in Figure 8. We use a U2G by connecting it to some vertex x elsewhere
in the construction. Given some such x, we create vertices y and w and a ladder graph on 2α vertices
{u1, . . . , uα, v1, . . . , vα}, with the edges (x, y), (y, u1), (y, v1), (w, uα), (w, vα). The ladder graph Ln on 2n
vertices has vertex set V (Ln) = {u1, . . . , un, v1, . . . , vn}, and edge set E(Ln) = {(ui, ui+1)|i ∈ [n − 1]} ∪
{(vi, vi+1)|i ∈ [n− 1]} ∪ {(ui, vi)|i ∈ [n]}.

3.2.4 Covered 2-Gadget (C2G)
The construction is very similar to that of the U2G - the only difference is the incrementation of
the ladder length by 1. Given x, we create vertices y and w and a ladder graph on 2α + 2 vertices
{u1, . . . , uα+1, v1, . . . , vα+1}, and edges (x, y), (y, u1), (y, v1), (w, uα+1), (w, vα+1).

U2G

y

u1

v1

xw

ul−2

vl−2vl−1vl

ul−1ul u2u3

v2v3

. . .
2 x

2+ x

With l = α:

With l = α+ 1:

Fig. 8: A vertex x incident to the Uncovered 2 Gadget (U2G) or Covered 2 Gadget (C2G). Left: construction
of the gadget where l = α for a U2G and l = α+ 1 for a C2G. Right: usage in later constructions. Note that
planarity is preserved.

3.2.5 Uncovered 3-Gadget (U3G)
The construction is illustrated in Figure 9. We start with the ladder graph on 2α vertices
{u1, . . . , uα, v1, . . . , vα}, and doubly subdivide the edge (ui, ui+1) (respectively (vi, vi+1)) whenever i is even
(resp. odd) with two new vertices ai, bi. We say doubly subdivide an edge (u, v) to refer to the deletion of (u, v)
and introduction of two vertices a, b and three edges (u, a), (a, b), (b, v). We add the vertices y1, y2, y3, w and
edges (x, y1), (y1, y2), (y2, y3), (y3, u1), (y3, v1), (w, uα). We denote the set of internal vertices of the U3G
by VU3G = {a1, . . . , aβ−1, b1, . . . bβ−1, y1, y2, y3, u1, . . . , uβ , v1, . . . , vβ , w}. Internal vertices are highlighted by
a red (solid) box in Figure 9. We make any vertex not already of degree 3 in VU3G incident to a U2G.
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U3G construction

2

2

xy1

y2

y3

2

2

2 2

22

2 2

w u2

v2 v1

u1uβ

vβ vβ−1

uβ−1 uβ−2

vβ−2

. . . 3 x

a1b1

bβ−2 aβ−2

aβ−1bβ−1

Fig. 9: A vertex x incident to the Uncovered 3 Gadget (U3G). Left: construction of the gadget; vertices of
VU3G are in the red (solid) box. Right: usage in later constructions. Note that planarity is preserved.

3.2.6 Uncovered 1-Gadget (U1G)
For a U1G, we simply create a vertex y incident to both a C2G and a U3G as shown in Figure 10, then add
an edge from y to the target vertex x.

U1G

y

2+

3 x x1

Fig. 10: A vertex x incident to the Uncovered 1 Gadget (U1G). Left: implementation of the gadget. Right:
usage in other constructions.

3.2.7 Construction: literal vertices and clause gadgets
Exactly 3m literal vertices and m clause gadgets are created. We iterate over Φ, and for each clause cj we
create a cycle on 6 new vertices Qj = {q1

j , . . . , q
6
j }, and make q2

j , q
4
j , q

6
j each incident to a U2G. Where the

clause cj contains the ath appearance of some literal li in Φ, we create two new literal vertices lai and lai
connected by an edge, and make each of lai and lai incident to a new U1G. We make lai incident to a vertex
from {q1

j , q
3
j , q

5
j }, such that each of these is adjacent to exactly one literal vertex. Figure 11 illustrates this

construction. Vertices u, v, w, u, v, w are literal vertices for which the corresponding literals appear in cj .

3.2.8 Construction: X-variable gadget
This construction is illustrated in Figure 12. For each variable xi ∈ X, we create 13 vertices {x1

i , . . . , x
13
i }

connected in a path, with vertex xpi incident to a U2G if p is even, and incident to a C2G for p ∈ {1, 7, 13}.
Lastly we add the edges (x3

i , l
1
2i), (x5

i , l
1
2i−1), (x9

i , l
2
2i), and (x11

i , l
2
2i−1) whenever the appropriate literal vertex

exists. Recall that, by the restrictions on Φ, at most one of the vertices l22i and l22i−1 exist in our construction
for any input.

3.2.9 Construction: Y -variable gadget
This construction is illustrated in Figure 13. For each variable yi ∈ Y , we create 8 vertices
{ai, v1

i , v
2
i , bi, F

1
i , F

2
i , T

2
i , T

1
i } connected in a cycle, with vertices v1

i and v2
i incident to U3Gs and vertices ai

and bi incident to U1Gs. Then we add edges (T 1
i , l

1
2i), (T 2

i , l
2
2i), (F 2

i , l
2
2i−1), (F 1

i , l
1
2i−1) whenever the appro-

priate literal vertex exists. If vertex T 2
i is not incident to a literal vertex, we connect it to a U2G. Otherwise,

F 2
i is connected to a U2G.
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Clause Gadget for MMT

u

w

q1j q2j

q3j

q4jq5j

q6j
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1
v

1

3 3

1

2

2

w
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2

3

3

22

2

2

2
3

1

1

1

1

2

1

1

Fig. 11: The clause gadget for clause cj together with an example nice assignment. If, for example, clause
cj = (l5 ∨ l17 ∨ l20) is the first appearance of l5 and l20 and the second appearance of l17 in Φ, then u = l15,
v = l217 and w = l120. The neighbourhoods of dashed vertices are shown in Figures 12 and 13 respectively
depending on whether they correspond to variables in X or Y .

X-variable gadget
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i x6
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i

2 22

2
2

2 2

222
2

2

2

31

A B A A

A

AA

B

B

BBB

3 3
Fig. 12: The X-variable gadget for variable xi together with an example gadget-respecting assignment; note
that either A = 1 and B = 3 or B = 1 and A = 3. Only in the former case, which corresponds to setting xi
to True, does x4

i have a temporal path to l12i. Here xi appears twice negatively and once positively, hence
x9
i is not incident to a literal vertex. The neighbourhoods of dashed vertices are shown in Figure 11.
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Y -variable gadget

ai v1i v2i bi

F 1
iF 2

iT 2
iT 1

i

2 1 2

131
3

2 2

3

333

l22i−1l22i−1 l12i−1
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2

ai bi

F 1
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iT 2
iT 1

i

v1i v2i

1 3 3 1

21 1 1
1 1 1

1 133

2

Fig. 13: The Y -variable gadget for variable yi together with an example nice assignment. Note the similarity
to the variable gadget in Figure 6. Here xi appears twice negatively and once positively, hence T 2

i is connected
to a U2G and not a literal vertex. The neighbourhoods of dashed vertices are shown in Figure 11.

3.2.10 Construction: k

In order to state k, we first define some auxiliary variables. As stated earlier, the number of X-gadgets,
Y -gadgets and clause-gadgets is nX , nY and m respectively. We then define:

#lit = 2 · 3m (The number of literal nodes.)
#U1G = #lit + 2 · nY (The number of U1Gs.)
#U3G = 2nY + #U1G (The number of U3Gs.)
#C2G = 3nX + #U1G (The number of C2Gs.)

#U2G = #U3G(2β + 2) + 3m+ 6nX + nY (The number of U2Gs.)

We now define k:

k = #U2G ·
(
α+ 1

3

)
+ #C2G ·

(
α+ 4

3

)
+ #U3G · (β) + 2m+ 3nX + 3nY + 1

This concludes the construction of the Happy MaxMinTaRDiS instance.

3.2.11 Properties of the construction
We first define the temporal assignments of interest to us.
Definition 4 (Gadget-respecting, Nice Temporal Assignment). A happy temporal assignment λ for the
graph G described above is:
• 2-gadget-respecting if every edge (x, y) incident to a U2G or C2G is assigned time 2 under λ.
• 3-gadget-respecting (resp. 1-gadget-respecting) if every edge (x, y) incident to a U3G (resp. U1G) is

assigned time 3 (resp. 1) under λ.

If λ is 1-, 2- and 3-gadget-respecting, we say that λ is nice.
We will show that a happy temporal assignment λ for G satisfies that every TaRDiS of (G,λ) has

cardinality at least k− 1 if and only if λ is nice. We then show that there exists a λ such that every TaRDiS
of (G,λ) has cardinality at least k if and only if (Φ, X, Y ) is a yes-instance of co-RPS.
Lemma 21. For any happy temporal assignment λ on any U2G gadget incident to x consisting of vertices
VU2G = {y, w, u1, . . . , uα, v1, . . . , vα}, if λ(x, y) = 2
• exactly α+1

3 vertices from VU2G are needed to temporal reachability dominate VU2G;
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• no choice of α+1
3 vertices temporally dominates VU2G ∪ {x}.

If λ(x, y) ̸= 2, it is possible to temporally dominate VU2G with exactly α+2
4 vertices.

Proof. It is easy to check that there is only one proper 3-colouring of the edges of the induced graph on
VU2G ∪ {x} up to isomorphism. Denote by A the colour of (x, y), B the colour of (y, u1) and C the colour of
(y, v1). Note that all edges (ui, vi) are given colour A, and the edges on the path u1, . . . , uα (resp. v1, . . . , vα)
alternate between B and C.

Any possible happy temporal assignment then corresponds exactly to one of 6 possible assignments of
times {1, 2, 3} to the colours {A,B,C}. From this point, we abuse notation slightly and denote λ(x, y) by
λ(A), λ(y, u1) by λ(B) and λ(y, v1) by λ(C). By symmetry of the gadget construction, we can always assume
λ(B) < λ(C).

If λ(A) = 2, we have λ(B) = 1 and λ(C) = 3; then |Rv| ≤ 6 for all v ∈ VU2G. Note in particular that
Rv1 = {y, v1, v2, v3, u1, u2}, and Rx ∩ VU2G = {y, v1}. Thus for any TaRDiS S, at least |VU2G| − 2 = 2α
vertices in VU2G are reached by vertices of S∩VU2G, each of which reaches at most 6 vertices including itself.
Recall that α ≡ 2 mod 12. Hence, |S ∩ VU2G| ≥ ⌈ 2α

6 ⌉ = α+1
3 . Note that, by the same logic, any set of size

at most α+1
3 reaches at most 2α+ 2 vertices and hence no such set reaches every vertex in VU2G ∪ {x} since

|VU2G ∪ {x}| = 2α + 3. Further, the set {v1, u4, v7, u10, . . . vα−1} is of size α+1
3 exactly and reaches every

vertex in VU2G. Conversely, if λ(A) ∈ {1, 3} then {v1, v5, v9, . . . , vα−1} is a set of size α+2
4 which reaches all

vertices of VU2G.

Lemma 22. For any happy temporal assignment λ on any C2G gadget incident to vertex x consisting of
vertices VC2G = {y, w, u1, . . . , uα+1, v1, . . . , vα+1}, if λ(x, y) = 2
• exactly α+4

3 vertices from VC2G are needed to temporally dominate VC2G;
• it is possible to temporally dominate VC2G ∪ {x} with the same number of vertices.

If λ(x, y) ̸= 2 it is possible to temporally dominate VC2G with exactly α+6
4 vertices.

Proof. As in the case of the U2G, there is only one proper 3-colouring of the edges of the induced graph on
VU3G ∪ {x} up to isomorphism. We again denote A the colour of (x, y), B the colour of (y, u1) and C the
colour of (y, v1). Since gadget symmetry is preserved, we also may assume without loss of generality that
λ(B) < λ(C). Then the assignment of the edges on vertices from VC2G ∪ {x} depends only on the value of
λ(x, y).

The dependence of reachability on this choice remains; namely if λ(A) = 2 then |Rv| ≤ 6 for all v ∈
VC2G and Rx ∩ VC2G = {y, v1}. Applying the same logic as above, for any TaRDiS S at least |VC2G| −
2 = 2α + 2 vertices in VC2G are reached by vertices of S ∩ VC2G. Hence |S ∩ VC2G| ≥ ⌈ 2α+2

6 ⌉ = α+4
3 .

Now {y, u2, v5, u8, v11, . . . uα} is of size α+4
3 exactly and reaches every vertex in VC2G and additionally

reaches x at time 2. Conversely if λ(A) ̸= 2 then covering VC2G requires at most α+6
4 vertices, for example

{y, u2, u6, u10, . . . , uα}.

Lemma 23. For any happy function λ which is not 2-gadget-respecting, (G,λ) admits a TaRDiS of size
less than k − 1.

Proof. Recall that n = nY + nX and n > m. Observe that the number of vertices in G which are not inside
a U2G or C2G is exactly:

#U3G · (4β + 2) + #U1G + #lit + 8nY + 13nX + 6m
= (2nY + 6m)(4β + 2) + 6m+ 6m+ 12nY + 13nX + 16m
≤ 32nβ + 31n.

which is strictly smaller than α
12 ≈ 50nβ + 50n. Even if there exists some λ⊥ such that every vertex in G

not belonging to a U2G or C2G is necessarily included in every TaRDiS of (G,λ⊥), any such TaRDiS would
still have size less than #U2G · α+1

3 + #C2G · α+4
3 and hence less than k − 1.

Lemma 24. For any 2-gadget respecting happy temporal assignment λ on any U3G gadget incident to vertex
x:
• If λ(x, y1) = 3 then β vertices from VU3G are needed to temporally dominate VU3G \ {y1}, and no choice

of β vertices temporally dominates VU3G ∪ {x}.
• If λ(x, y1) ̸= 3, it is possible to temporally dominate VU3G \ {y1} with exactly β

2 + 1 vertices.

21



Recall VU3G = {a1, . . . , aβ−1, b1, . . . bβ−1, y1, y2, y3, u1, . . . , uβ , v1, . . . , vβ , w}; the set of vertices in the red
(solid) box in Figure 9.

Proof. There are only two possible 2-gadget-respecting assignments for the edges of VU3G. In any case, for
all i ∈ [β], λ(ui, vi) = λ(x, y1). We denote by λ3 the assignment where λ(x, y) = 3 and λ1 the temporal
assignment where λ(x, y) = 1.

It can be manually verified that, under λ3, β vertices are necessary to temporally dominate VU3G \ {y1}.
This is also sufficient: the set {v1, u2, v3, u4, . . . , uβ} is one possibility. On the other hand, under λ1 there
exists a set of size β

2 + 1 which temporally dominates VU3G \ {y1}, namely {u1, u2, u4, . . . , uβ}.

Lemma 25. For any 2-gadget-respecting λ, if for any edge e incident to a U3G λ(e) ̸= 3 then (G,λ) admits
a TaRDiS of size less than k − 1.

Proof. Observe that the number of vertices in G which are not inside a U2G, C2G or U3G is exactly:

#U1G + #lit + 8nY + 13nX + 6m
= 6m+ 6m+ 8nY + 13nX + 6m
= 18m+ 8nY + 13nX
≤ 31n

which is strictly smaller than β
2 . Even if there exists some 2-gadget-respecting λ⊥ such that every vertex

in G not belonging to a U2G, C2G, or U3G is necessarily included in every TaRDiS of (G,λ⊥), any such
TaRDiS would still have cardinality less than #U2G · α+4

3 + #C2G · α+4
3 + #U3G · (β) and hence less than

k − 1. Recall we assigned k = #U2G ·
(
α+1

3
)

+ #C2G ·
(
α+4

3
)

+ #U3G · (β) + 2m+ 3nX + 3nY + 1, and that
by our choice of β we have β

2 > 2m+ 3nX + 3nY + 1.

Lemma 26. Any happy temporal assignment λ such that every TaRDiS on (G,λ) has size at least k − 1 is
nice.

Proof. By Lemmas 23 and 25, any happy temporal assignment λ such that every TaRDiS on (G,λ) has size
at least k− 1 is 2-gadget and 3-gadget-respecting. Observe that if λ is happy, 2- and 3-gadget-respecting, it
must also be 1-gadget-respecting by the edge coloring constraint. Hence λ is nice.

We say that a nice function λ encodes a truth assignment to the variables of X, and define this assignment
as follows: let variable xi ∈ X be set to True if λ(x1

i , x
2
i ) = 1 and False otherwise. In Figure 12, True

corresponds to the case where A = 1.
Lemma 27. A nice function λ encodes an assignment to X under which Φ(X,Y ) is satisfiable if and only
if (G,λ) admits a TaRDiS of size k − 1.

Proof. We first prove the forward direction. That is, if λ encodes an assignment X to X under which Φ(X,Y )
is satisfiable then (G,λ) admits a TaRDiS of size at most k − 1.

In this case, there is an assignment Y to Y such that Φ(X ,Y) evaluates to True. We have, by Lem-
mas 21, 22 and 24, that exactly #U2G · α+1

3 + #C2G · α+4
3 + #U3G · β vertices are necessary and sufficient

to cover all the vertices in U2G, U3G, C2G and U1G gadgets, and these vertices also reach every vertex
adjacent to a C2G at time 2 exactly. Let S include exactly those vertices.

For each Y -variable gadget we add the vertices v1
i and T 1

i to S, if yi is True in Y, and vertices v1
i and

F 1
i are added otherwise. Further, let S include vertices x4

i and x10
i from each X-variable gadget. Note that

irrespective of how that gadget is labeled under λ, this choice of vertices is sufficient to reach all vertices
not already covered from some vertex in S within a C2G. Additionally, note that now every literal vertex
corresponding to a literal set to True under the combined assignment to X ∪Y is reached from S. Since this
is a satisfying assignment, every set Qj of clause gadget vertices as shown in Figure 11 must be incident to
at least one literal vertex which is already reached from S. By symmetry we may assume this literal vertex
is u (otherwise, cycle the labels q1

i , . . . , q
6
i such that it is). Then let S include vertices q3

j and q5
j . Observe

that S is a TaRDiS of size precisely k − 1; all gadget vertices, literal vertices, clause vertices and variable
vertices are reachable from S.

We now prove the other direction. Namely, if (G,λ) admits a TaRDiS of size at most k−1 then λ encodes
an assignment to X under which Φ(X,Y ) is satisfiable. Recall that, by Lemma 26, λ must be nice. Let S
be a minimum TaRDiS of size at most k − 1 in (G,λ). We may assume, by Lemma 2, that S is canonical.
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Since S is minimum, we have, by Lemmas 21, 22 and 24, that exactly #U2G · α+1
3 +#C2G · α+4

3 +#U3G ·β
vertices in S cover all the vertices in U2G, U3G, C2G and U1G gadgets. Then at most 2m + 3nX + 3nY
vertices of S are not among these, and must be sufficient to cover the remaining vertices of G.

We define from S a truth assignment to Y as follows: if vertex T 1
i or T 2

i is in S, then we assign yi to be
True, and we assign it to be False otherwise. We argue that this assignment together with X necessarily
satisfies Φ(X,Y ). Note that, since S is canonical, it must contain at least 2 vertices from every clause gadget,
2 vertices from every Y -variable gadget, and 2 vertices from every X-variable gadget. All these bounds must
be tight, else S has cardinality more than k − 1.

Suppose for contradiction that Φ(X,Y ) is not satisfied by the assignment. Then some clause cj contains
only False literals under the assignment, and at least 3 vertices in Qj must be in S, contradicting that at
most 2 vertices from any clause gadget may be in the TaRDiS. Hence there is an assignment to Y satisfying
Φ(X,Y ).

Lemma 28. co-RPS is polynomial-time reducible to Happy MaxMinTaRDiS.

Proof. The construction above can be achieved in polynomial time. We have shown:
• The constructed MaxMinTaRDiS instance (G, k, τ = 3) is a yes-instance if and only if there is some nice
λ such that every TaRDiS for (G,λ) has size at least k − 1.

• Every nice λ encodes a truth assignment to X.
• A nice function λ encodes an assignment to X under which Φ(X,Y ) is satisfiable if and only if (G,λ)

admits a TaRDiS of size k − 1.

That is, (G, k, τ = 3) is a yes-instance of MaxMinTaRDiS if and only if (X,Y,Φ) is a yes-instance of
co-RPS.

Theorem 4. Happy MaxMinTaRDiS is ΣP2 -complete even restricted to inputs where τ = 3 and the input
graph G is planar.

Proof. By Lemma 28 we have that co-RPS is polynomially reducible to Happy MaxMinTaRDiS. co-
RPS is ΣP2 -complete by Lemma 20. The reduction above preserves planarity of Φ. We have containment of
MaxMinTaRDiS in ΣP2 from Lemma 15.

3.3 NP-completeness of Nonstrict MaxMinTaRDiS with lifetime 2
Here we consider the restriction of Nonstrict MaxMinTaRDiS to instances with lifetime 2. We show the
problem to be equivalent to the Distance-3 Independent Set (D3IS) decision problem. We say that two
problems X and Y are equivalent if they have the same language - that is, an instance I is a yes-instance
of X if and only if the same instance I is a yes-instance of Y . Where X has a language consisting of triples
(G, k, τ) and Y has a language of tuples (G, k), we may say that Y is equivalent to X with τ fixed to some
value.

We define the distance d(u, v) between two vertices u, v in a temporal graph to be the number of edges
in the shortest path between them in the footprint of the graph.
Definition 5. A distance-3 independent set (D3IS) of a static graph H is a set S ⊆ V (H) such that for all
distinct u, v ∈ S, d(u, v) ≥ 3.

The decision problem D3IS is defined as follows.

Distance-3 Independent Set (D3IS)
Input: A static graph H = (V,E) and an integer k.
Question: Is there a set S ⊆ V (H) of cardinality k that is a distance-3 independent set?

We aim to show that a static graph H and integer k are a yes-instance of Nonstrict MaxMinTaRDiS
with lifetime 2 if and only if the same graph H and integer k are a yes-instance of D3IS.

We begin by showing that existence of a maximal D3IS of size k in a graph H implies that we can find
a temporal assignment λ : E(H) → {1, 2} such that a minimum TaRDiS in (H,λ) is of cardinality k. Given
such a D3IS S of H, we assign λ(u, v) = 1, when u ∈ S or v ∈ S, and λ(u, v) = 2, otherwise.
Lemma 29. Let S be a maximal D3IS of a static graph H and λ be a temporal assignment of H where
λ(u, v) = 1 when u ∈ S or v ∈ S, and λ(u, v) = 2 otherwise. Then S is a minimum TaRDiS of (H,λ).

Proof. We first show that S is a TaRDiS. We assume without loss of generality that H is a single connected
component. Suppose for contradiction some vertex u is not reachable from any vertex in S. Note that every
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vertex in S trivially reaches its neighbours. So, by construction of λ, u is incident only to edges at time 2.
Since we have assumed that H consists of a single connected component, there must be a static path in H
from each vertex in S to u. Let z be the closest vertex in S to u. Then the shortest path from z to u must
have length 2 and consist of an edge assigned time 1 followed by an edge assigned time 2. Else, S is not
maximal. Hence, the shortest path from z to u is a nonstrict temporal path and u ∈ Rz, contradicting our
assumption. Thus S is a TaRDiS of the constructed instance.

We now show minimality of S. By construction of λ, every vertex v ∈ S is temporally reachable only from
its closed neighbourhood N [v]. No temporal path originating outside N [v] can include any edge incident to
v since any such path must contain an edge assigned time 2 before the final edge which is assigned time 1.
Since S forms a D3IS, N [u] ∩ N [v] = ∅ for all u, v ∈ S. Therefore, for (H,λ) to be temporal reachability
dominated, there must at least be a vertex from the neighbourhood of each vertex in S. These are disjoint
sets, so any TaRDiS must have cardinality at least k. Hence S is a minimum TaRDiS of (H,λ).

Definition 6 (Sole Reachability Set). We define the sole reachability set of a vertex v in a TaRDiS S as
the set SR(G, S, v) = Rv(G) \ (∪u∈S\{v}Ru(G)). Equivalently, it is the set of vertices reachable from v and
not any other vertex in S.

When G is clear from context, we write SR(S, v) for SR(S,G, v). Note that, in a minimum TaRDiS, every
vertex has a non-empty sole reachability set.
Definition 7. We call a TaRDiS S on a temporal graph G independent if and only if every vertex in S is
in its own sole reachability set under S.
Lemma 30. If a temporal graph G admits an independent nonstrict TaRDiS S, then S is a D3IS in the
footprint graph G↓.

Proof. Consider two vertices u, v ∈ S at distance d(u, v) from one another in G↓. If u and v are adjacent, then
u and v reach each other, which would contradict independence of S. If d(u, v) = 2 then there is at least one
vertex w ∈ N [u] ∩N [v], and either λ(u,w) ≤ λ(w, v) or λ(u,w) > λ(w, v). So one of u and v must reach the
other. Hence any two vertices in S must be distance at least 3 from one another, the definition of a D3IS.

Lemma 31. If a temporal graph G with lifetime 2 has a minimum nonstrict TaRDiS of cardinality k, then
G↓ admits a D3IS of size k.

Proof. Our proof is constructive; given a minimum TaRDiS S, we show existence of an independent minimum
TaRDiS S∗ of equal cardinality and then apply Lemma 30.

First, we justify some simplifying assumptions about G. Since TaRDiS can be computed independently
in disconnected components of G↓, we will assume G↓ is connected. Further, if E1(G) = ∅ or E2(G) = ∅ we
may choose any single vertex from G to be a minimum TaRDiS which is also independent; hence we assume
E1(G) ̸= ∅ and E2(G) ̸= ∅. We also recall that SR(S, x) ̸= ∅ for all x ∈ S by minimality of S.

We construct S∗ by replacing every vertex x in S such that x /∈ SR(S, x) with some vertex x∗ with the
property that Rx∗ = Rx and x∗ ∈ SR(S, x), as follows. Let y ̸= x be a vertex in S such that y reaches x.
The path from y to x cannot arrive at time 1, else S is not minimal as Rx = Ry and S \ {x} is a TaRDiS.
Choose x∗ to be the closest vertex to x in SR(S, x). We know such a vertex exists by minimality of S. We
claim that the path from x to x∗ arrives at time 1 and so Rx = Rx∗ . To see this, suppose otherwise. The
path must begin with at least one edge at time 1, otherwise x∗ would be reachable from y. If the path arrives
at time 2, then the last vertex on the path reached at time 1 is closer to x than x∗, and is in SR(S, x). Else,
some other vertex in S reaches x∗.

This concludes our construction of S∗ as an independent minimum TaRDiS. By Lemma 30, S∗ is also a
D3IS.

Combining Lemmas 29 and 31 gives us the following theorem.
Theorem 5. Nonstrict MaxMinTaRDiS with lifetime τ = 2 is equivalent to Distance-3 Independent
Set.

Interestingly, the same does not hold for τ ≥ 3. A counterexample is shown in Figure 4c, where the
minimum TaRDiS is larger than the maximum D3IS of the footprint. The Petersen graph also gives us a
3-regular counterexample.

Eto, Guo and Miyano [16] show that D3IS is NP-complete even on planar, bipartite graphs with max-
imum degree 3. They also show D3IS to be W [1]-hard on chordal graphs with respect to the size of the
distance-3 independent set. D3IS is also shown to be APX-hard on r-regular graphs for all integers r ≥ 3 and
admit a PTAS on planar graphs by Eto, Ito, Liu, and Miyano [51]. Agnarsson, Damaschke and Halldórsson
[52] show that D3IS is tractable on interval graphs, trapezoid graphs and circular arc graphs.
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Corollary 7. Nonstrict MaxMinTaRDiS restricted to inputs with τ = 2 remains NP-complete even
when restricted to planar, bipartite graphs with maximum degree 3. Furthermore, the problem is W [1]-hard
with respect to the parameter k, the size of a minimum TaRDiS, and is APX-hard on r-regular graphs for
all integers r ≥ 3.
Corollary 8. Nonstrict MaxMinTaRDiS restricted to inputs with τ = 2 is in NP, admits a PTAS on
planar graphs and is tractable on interval graphs, trapezoid graphs and circular arc graphs.

4 Parameterized complexity results for TaRDiS
In Section 2, we showed that the variants of TaRDiS are NP-complete and W[2]-hard with respect to k.
This rules out k as a candidate parameter for an fpt algorithm. We begin by showing inclusion of TaRDiS
in FPT with respect to locally earliest edges and tractability when the input is heavily restricted. We then
give an algorithm which solves each variant of TaRDiS on a nice tree decomposition of the footprint graph.
This generalises the tree algorithm given in Section 2.

A problem Π is said to be fixed-parameter tractable (fpt) with respect to some parameter k if there is an
algorithm solving Π in time f(k) · poly(n) (where n is the size of the instance of Π). The complexity class
FPT consists of all problem-parameter pairs admitting an fpt algorithm.

4.1 FPT results with a restricted temporal assignment
We begin with two FPT results that require the temporal assignment to be restricted in some way to
recover tractability of TaRDiS. In the first, we consider Happy TaRDiS and Nonstrict TaRDiS when
parameterised by the number of locally earliest edges. Following that, we consider Strict TaRDiS when
each component of the input is restricted in some way.
Lemma 32. Happy TaRDiS and Nonstrict TaRDiS are in FPT with respect to the number of locally
earliest edges and weakly locally earliest edges, respectively.

Proof. It suffices to observe that any instance with t (weakly) locally earliest edges trivially admits a TaRDiS
of cardinality t (Corollary 1). If k ≥ t, we must have a yes-instance. Otherwise there are

(
t
k

)
possibilities for

a (weakly) canonical TaRDiS, which can be checked by brute force in polynomial time when t is bounded.

Lemma 33. Strict TaRDiS is in FPT parameterized by maximum degree in G↓, lifetime and k, and
Happy TaRDiS is in FPT with parameters lifetime and k.

Proof. Any decidable language consisting of words of length at most some constant c can be decided in
constant time, hence is in P . Any strict temporal path in a temporal graph G has length at most τ . This
entails that, for all v, |R<v | ≤ 2∆τ where ∆ is the maximum degree of G↓. Hence any strict TaRDiS S in
G must satisfy |S| ≥ V (G)

2∆τ . Therefore, no instance (G, k) satisfying |V (G)| ≥ 2k∆τ can be in the language
Strict TaRDiS. Note that, in a happy temporal graph, we can can apply the property that τ ≥ ∆.
Therefore, both problems restricted as above have constantly many yes-instances, each of size bounded by
a constant.

4.2 Preliminaries: treewidth and tree decompositions
We refer the interested reader to Chapter 10 of Niedermeier’s Invitation to Fixed-Parameter Algorithms [53]
for a fuller introduction. Definitions and results in this subsection are taken or adapted from that work.
Definition 8 (Tree Decomposition, Treewidth). We say a pair (T,B) is a tree decomposition of G if T is
a tree and B = {B(s) : s ∈ V (T )} is a collection of subsets of V (G), called bags, satisfying:

1. V (G) = ∪s∈V (T )B(s).
2. ∀(u, v) ∈ E(G) : ∃s ∈ V (T ) : {u, v} ∈ B(s). That is, for each edge in the graph, there is at least one bag

containing both of its endpoints.
3. ∀v ∈ V (G) : T [{s : v ∈ B(s)}] is connected; for each vertex, the subgraph obtained by deleting every node

not containing v in its bag from T is connected.

The width of a tree decomposition is defined to be max{|B(s)| : s ∈ V (T )} − 1. The treewidth of a graph G
is the minimum ω such that G has a tree decomposition of with ω.

For a given tree decomposition (T,B) of graph G, we denote by Vs ⊆ V (G) the set of vertices in G that
occur in bags of the subtree of T rooted at s. It is a well-known result by Bodlaender that finding a tree
decomposition of width at most ω, if one exists, is in FPT with parameter ω.
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Fig. 14: Graph P3 and four of its tree decompositions. From left to right: P3 ; the trivial decomposition
of width 2; a decomposition of width 1; two possible nice tree decompositions of width 1. Note that every
graph admits the trivial tree decomposition of width V (G) − 1, where there is only one bag B(s) = V (G).

Theorem 6 (Bodlaender [54]). For all fixed constants ω ∈ N, there exists a linear time algorithm that tests
whether a given graph G = (V,E) has treewidth at most ω, and if so outputs a tree decomposition of G with
treewidth at most ω.

For ease, we describe our TaRDiS algorithm on a tree decomposition with additional structural
properties.
Definition 9 (Nice Tree Decomposition, Join/Introduce/Forget/Leaf Node). A tree decomposition (T,B)
is called a nice tree decomposition if:
• every node of T has at most two children;
• if a node s has two children sl and sr, then B(s) = B(sl) = B(sr), and we call s a join node;
• if node s has one child s′ then either:

– |B(s)| = |B(s′)| + 1 and B(s) ⊃ B(s′) (s is an introduce node), or
– |B(s)| = |B(s′)| − 1 and B(s) ⊂ B(s′) (s is a forget node);

• if node s has no children then B(s) = ∅, and we call t a leaf node.

An example of a graph and different tree decompositions of it can be found in Figure 14. It is a known
result that a tree decomposition (T,B) of a graph G of width ω on n nodes can be efficiently processed to
obtain a nice tree decomposition G of width ω. We use this result as given below by Cygan, Fomin, Kowalik,
Lokshtanov, Marx, Pilipczuk, Pilipczuk and Saurabh [17].
Lemma 34 (Cygan [17]). If a static graph H admits a tree decomposition of width at most ω, then it also
admits a nice tree decomposition of width at most ω. Moreover, given a tree decomposition (T,B) of width
at most ω, on can compute a nice tree decomposition of H of with at most ω that has at most O(ωV (H))
nodes in time O(ω2 max(V (T ), V (H)).

4.3 Algorithm for TaRDiS parameterized by treewidth and lifetime
The following gives an algorithm for TaRDiS given a nice tree decomposition (T,B) of the footprint G↓ of
the input temporal graph G. Specifically, it computes the cardinality of a minimum TaRDiS S. Note that we
use the word “vertex” when referring to the original graph and “node” when discussing the decomposition
graph. We use the symbols ≺ and ≻ as place-holders for strict/nonstrict inequalities. More specifically, in
Strict TaRDiS we use < and > in the place of ≺ and ≻ respectively and for Nonstrict TaRDiS we use
≤ and ≥. By substituting the correct inequalities, it can be seen that the algorithm described is correct for
each of Strict TaRDiS and Nonstrict TaRDiS.

Denote by Gs the subgraph (Vs, Es), where Vs (respectively Es) is the set of all vertices (resp. edges)
introduced in the subtree rooted at node s of the decomposition tree. Intuitively, the algorithm works from
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leaf nodes to the root node and finds, at each node s, a partial solution consisting of a minimal TaRDiS S
for the subgraph Gs.

We define the arrival time of a temporal path at a vertex v to be the time of the final time-edge of the
path. For the trivial path from a vertex to itself, we say that the time of arrival is 0. Similarly, we define the
departure time of a temporal path as the time of the first time-edge in the path. For example, the temporal
path consisting of a single time-edge has the same departure and arrival time. We note that, for a path to
be a strict temporal path, the arrival time at a vertex v must be strictly before the departure time from v.
We allow the arrival and departure times to be equal in nonstrict temporal paths of any length. We refer to
a temporal path from a vertex v to a vertex u with earliest arrival time as a foremost temporal path. We
call the arrival time of a foremost path the foremost arrival time. A foremost path from a set of vertices S
to a single vertex v is a foremost path from a vertex u in S to v such that the arrival time of a path from
any other vertex in S to v is the same or later.

4.3.1 States
A state of a bag B(s) is a mapping ψ : B(s) → ([0, τ ]∪ ⊥)×([0, τ ]∪ ⊥) where ψ(v) = (ta(v), tp(v)), such that
ta(v) ≥ tp(v) if both values are integers and tp(v) = ⊥ only if ta(v) = ⊥. Conceptually, we think of ta(v) as
the arrival time of some path to v from our partial TaRDiS and tp(v) as the time by which we “promise”
arrival of such a path from the eventual full TaRDiS (necessary to reach forgotten vertices). Denote the set
of all states of a node s by Ψ(s).

In our definition of a temporal graph, we assume that all edges are active at strictly positive times.
Therefore, in both the strict and nonstrict variants of the problem, the earliest time any vertex can be
temporally reachable from a vertex in the TaRDiS is 1, unless it is in the TaRDiS itself. Our intention is
that, if ta(v) ̸= ⊥ then ta(v) is exactly the time that v is reached from some TaRDiS vertex. If ta(v) = 0 for
a vertex v in the bag, this corresponds to v being included in the partial TaRDiS S. We use the notation t−1

a ,
t−1
p to denote the preimage of the functions ta and tp respectively. That is, t−1

a (x) is the set of all vertices v
which are assigned (x, tp(v)) under a state ψ.

We call a state ψ of a bag B(s) consistent if and only if there exists a set of vertices S ⊆ V (Gs) such that
• for all v ∈ B(s) \ t−1

a (⊥) the foremost temporal path from some vertex in S arrives at ta(v) exactly;
• for any vertex w in V (Gs) \B(s) which is not reachable from some vertex in S, there is a temporal path

to w from some vertex u in B(s) with departure time t such that t ≻ tp(u).

We call such a set S a set that supports ψ of s. Note that, if ta(v) =⊥, then it is possible to have a valid
state where v is reachable from some vertex in S.

4.3.2 Signature
For a state ψ of a node s, we define the signature c(s, ψ) to be the cardinality of the smallest set S∗ which
supports ψ of s. If there is no such S∗, then we say that c(s, ψ) = ∞. We say that such a set S∗ supports
the signature c(s, ψ) if S∗ supports ψ of s and |S∗| = c(s, ψ). The signature is a data structure with size
O(τ2(ω+1)) where ω is the width of the nice tree decomposition of G↓. Note that two bags may contain the
same (possibly empty) set of vertices. Therefore, the signature must be both a function of the state ψ and
of the node s which ψ is a state of. Examples of the signatures of different states can be seen in Figure 15.

We use the convention that the root node r is empty, i.e. B(r) = ∅. Consequently there is only one
possible state for the root node, namely the empty function, and hence Ψ(r) = {∅}. Therefore, we have a
yes-instance of TaRDiS if and only if c(r, ∅) ≤ k. Note that ∅ is always a consistent state for r. It is supported
by the trivial TaRDiS S = V (G).

We now discuss how we iteratively calculate the signature of a state for each type of node in a nice tree
decomposition.

Leaf nodes
We assume that leaf nodes l are empty, so there is only one trivial state, namely the empty function ∅. The
signature of this state for leaves l is c(l, ∅) = 0.

Introduce Nodes
Let s be an introduce node with child s′. Then we must have that B(s) = B(s′) ∪ {v} for some v /∈ B(s′).
To describe how to find c(s, ψ) for an introduce node s and state ψ, we must define some new notation.
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Fig. 15: Five example bags, labelled with states and signatures. In the bottom right example, the infinite
signature reflects the fact there exists no TaRDiS reaching v at time 3 exactly.
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Fig. 16: A valid state of an introduce node and a state of its child which are supported by the same partial
TaRDiS. Here x is a forgotten vertex.

Let ψ|B(s′) be the restriction of some state ψ of s to the bag B(s′). For a state ψ and functions g, f , let
the state ψta(A)→g,tp(B)→h be defined

ψta(A)→g,tp(B)→h(x) :=


(g(x), h(x)) if x ∈ A ∩B

(g(x), tp(x)) if x ∈ A \B
(ta(x), h(x)) if x ∈ B \A
(ta(x), tp(x)), otherwise.

For an introduce node s with introduced vertex v and state ψ of s, we define av to be the time of the
earliest time-edge in {((v, u), t) |u ∈ B(s) and ta(u) ≺ t under ψ}. If no such edge exists, let av = ∞.
Notionally, this is a time before which v cannot be reached from a vertex in S unless v is itself in S. We
define Rtv to be the set of vertices that are temporally reachable from v by temporal paths which depart at
a time t′ ≻ t. We use the convention that R∞

w = R⊥
w = ∅ for all vertices w. For a vertex u in Rtv, define

foremosttv(u) to be the arrival time of a foremost path from v to u which departs at a time t′ ≻ t. An example
of a valid state of an introduce node can be seen in Figure 16.
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Lemma 35. Let ψ be a state of an introduce node s with child s′ where v is the vertex introduced.
Define Z to be the set (Rta(v)

v (G) ∩ B(s)) \ {u : foremostta(v)
v (u) > ta(u)}, and define the function

f(w) := min{tp(w), foremosttp(v)
v (w)}. Then

1. if, for any u ∈ Rav
v (G) ∩ B(s), ta(u) ̸= ⊥ and foremostav

v (u) < ta(u), then c(s, ψ) = ∞ (a foremost path
arrives before it is prescribed to);

2. else, if ta(v) = 0, c(s, ψ) = 1 + c
(
s′, ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)
(the introduced vertex is added to the

partial TaRDiS);
3. else, if we allow nonstrict paths (i.e. if 1 ≺ 1), av = ta(v) and there exists a nonempty

set W of neighbours of v where, for all w ∈ W , ta(w) = ta(v) = λ(vw) then c(s, ψ) =
minw∈W

{
c

(
s′, ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)}
for Z ′ = Z \ {w} (a pair of neighbours each rely on the

other to be reached on time);
4. else, if ta(v) ∈ {av,⊥} then c(s, ψ) = c

(
s′, ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)
(the introduced vertex could

result in a foremost path with an earlier arrival time);
5. else, c(s, ψ) = ∞ (we have an inconsistent state).

Proof. We begin by noting that for any set S supporting ψ of s if the foremost arrival time to v from a vertex
in S is ta(v), then foremostta(v)

v (u) < ta(u) contradicts that ta(u) gives the earliest time of arrival from a
vertex in S to u. Otherwise, we could append the temporal path to v from S with the path from v to u to find
an temporal path with an earlier arrival time. Hence, in case (1) of the Lemma, ψ is an inconsistent state.

We have characterised the value of c(s, ψ) based on the value of ta(v) under ψ. This gives us four further
cases ((2)-(5)) to consider, accounting for all possible values of ta(v). We show that our calculation of the
signature c(s, ψ) is correct for each possible value of ta(v) for the introduced vertex v. Let S be a set
that supports the signature of the state ψ of node s. That is, it is a set of minimal cardinality such that
t−1
a (0) = S ∩ B(s); all vertices w in B(s) \ t−1

a (⊥) are temporally reachable from S by a foremost path
arriving at ta(w); and each vertex in Gs \B(s) not reachable from S is temporally reachable from a vertex
u in B(s) departing at some time t ≻ tp(u). Note that, for a consistent state, if there is a forgotten vertex
reachable from a vertex w in B(s) by a path departing at time t ≻ tp(w), the change in tp values ensures
that this remains true in the child states over which we take the minimum value.

In case (2), ta(v) = 0. Additionally, for all u ∈ Rtv, ta(u) ≤ foremostta(v)
v (u) or ta(u) =⊥, since otherwise

we would have case (1). Hence for any set S supporting ψ, v ∈ S and all vertices in R0
v are reached by time

foremost0
v(u). We claim that a set S supports ψ if and only if S \ {v} supports the state ψ′ = (t′a, t′p) :=

ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) of s′. That is, every vertex w in B(s) \ R0

v is temporally reached by a vertex in
S \{v} at t′a(w) and every vertex in V (Gs)\B(s) that is not temporally reachable from S \{v} is temporally
reachable from a vertex y in B(s′) by a path departing at time t′ ≻ t′p(y). It is clear that, if states ψ and ψ′

are valid, the former statement is true. This is because the value of ta for a vertex in B(s) \R0
v is the same

under both states.
To verify the latter statement, note that if a vertex y′ in V (Gs) \ B(s) is reachable from a vertex y in

B(s′) by a path departing at t′ ≻ t′p(y) under ψ′, then the same must be true under ψ. By construction of
a nice tree decomposition, there are no vertices in V (Gs) \B(s) that are adjacent to v. Therefore, any path
from v to a vertex in V (Gs) \B(s) must traverse another vertex x in B(s) and depart x at time t′′ ≻ t′p(x)
under ψ′. Thus, if a vertex y′ in V (Gs) \ B(s) is reachable from a vertex y in B(s′) by a path departing
at t′ ≻ t′p(y) under ψ, then y′ must be reachable from a (possibly different) vertex y′′ under ψ′. Therefore,
a set S supports ψ if and only if S \ {v} supports the state ψ′ = ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))

B(s′) of s′ and our
calculation of c(s, ψ) is correct.

Intuitively, cases (3) and (4) deal with the cases where the introduction of v could change the earliest
arrival time of a path from a vertex in S to a vertex in B(s) \ {v}. In case (3) we deal with the possibility of
nonstrict temporal paths when ta(w) = foremostta(v)

v (w) = ta(v) for some vertex w. In this case, a child state
wherein ta(w) =⊥ for every such w may be supported by a set S which does not support ψ. For this reason,
we take the minimum over the signatures of states where the ta value of each such neighbour is unchanged.
A set S supports ψ if and only if there exists a w ∈ W such that S supports ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))

B(s′) .
The forward implication is clear from our description. Now suppose, for contradiction, that S supports
only ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))

B(s′) . Then there is either a vertex u in R
ta(v)
v which is not reached from S at

time ta(u) or there is a forgotten vertex which is not reachable from S or a vertex w in B(s) departing at
t′ ≻ tp(w). Neither case is possible, and thus we have a contradiction.
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Fig. 17: A forget node with a valid state and its extension to a state of its child supported by the same
partial TaRDiS.

In case (4), the above does not apply. This is either because we are in the strict setting or because there is
no such nonempty set W , and ta(v) ∈ {av,⊥} under ψ. Then, for all vertices w in Z = (Rav

v (G)∩B(s))\{u :
foremostta(v)

v (u) > ta(u)}, there exists a foremost path from a set S that supports the state which traverses
v. Therefore, any set S which supports ψ must support a child state where these vertices w ∈ Z ′ have
ta value ⊥ and tp is updated as mentioned earlier. In addition, it is clear that any set which supports
ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) must support ψ. Since we have not added any vertices to S, the signature of s

under ψ must be exactly the signature of s′ under ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) .

In case (5) we deal with all remaining possibilities, namely when ta(v) for the introduced vertex v has a
nonzero value and ta(v) ̸= av. Then ta(v) must be strictly before or after the earliest time-edge ((v, w), t)
incident to v such that, for the other endpoint w, ta(w) ≺ t. Therefore, for any set S that supports ψ, if the
foremost temporal path from a vertex in S to each neighbour w of v arrives at ta(w), the foremost temporal
path to v from S must arrive at a time which is not equal to ta(v). This implies that the state is inconsistent
and must therefore have an infinite signature.

Forget Nodes
Let s be a forget node with child s′ such that B(s) = B(s′) \ {v}. Let Ψstrong ⊂ Ψ(s′) be the set of states
which extend ψ to B(s′) where ta(v) ∈ [0, τ ] and ta(v) = tp(v). Intuitively, these are the states where our
partial TaRDiS already reaches the forgotten node v by the promised time tp(v), i.e. the promise is strongly
satisfied.

Let t′ be the earliest time such that there exists a vertex w in B(s) and a temporal path in B(s′) from
w to v departing at some time t such that tp(w) ≺ t under ψ and arriving by t′. Let Ψweak ⊂ Ψ(s′) be the
set of states which extend ψ to B(s′) where either t′ ≤ tp(v) or tp(v) =⊥. Intuitively, Ψweak is the set of
states where the the requirement that a forgotten vertex is reached by a path departing at time t ≻ tp(v)
is automatically satisfied by a path from w departing at t ≻ tp(w) for some w ̸= v. That is, the promise is
weakly satisfied. An example of a valid state of a forget node can be seen in Figure 17.
Lemma 36. Let s be a forget node with state ψ and child s′ where v is the vertex forgotten at s. Then

c(s, ψ) = min ({c(s′, ψ′) : ψ′ ∈ Ψweak ∪ Ψstrong} ∪ {∞}) .

Proof. We begin by showing that if a set S supports any state ψ′ ∈ Ψweak ∪ Ψstrong of s′ then the same set
S supports ψ. This shows us that the signature of ψ is at most what we have calculated. Following this, we
show that there is no smaller set that supports ψ and hence that we have calculated the signature correctly.

Recall that set S supports a state ψ of a node s if and only if, under ψ:
• For all vertices u in B(s) \ t−1

a (⊥), the foremost path from S arrives at time ta(u), and
• for all vertices x in Gs \B(s) which are not reachable from S, there is a temporal path to x which departs

from a vertex w in B(s) at some time t ≻ tp(w).

To start, consider the case where S supports ψ′ ∈ Ψweak. That is, there exists a vertex w ∈ B(s′) and
a temporal path from w to v that departs at some time t′ ≻ tp(w) and arrives by time tp(v). As a result,
any forgotten vertex x temporally reachable from v by a path departing at some time t′′ ≻ tp(v) must be
temporally reachable from w by a path departing at time t′ by prefixing the path from v to x with the
temporal path from w to v. If ψ′ is consistent, then all vertices y in B(s′) \ {v} = B(s) that are reachable
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from a vertex in S are reached by time ta(y) if ta(y) ̸=⊥. Therefore, the restriction of ψ′ to B(s) is consistent
and supported by S.

Now consider the case where S supports a state ψ′ ∈ Ψstrong. Recall that Ψstrong is the set of states of s′

where ta(v) ∈ [0, τ ] and ta(v) = tp(v). If such a state ψ′ is consistent for s′, then v is reached from a vertex
in S by time ta(v). Using that tp(v) = ta(v), we obtain that any forgotten vertex x reachable from B(s)
by a path from v departing at some time t′ ≻ tp(v) is reachable from S as well. Namely, we can prefix the
temporal path from v to x which departs at time t′ with the temporal path from S to v which arrives by
time ta(v) = tp(v). Hence we obtain that ψ is consistent for s and supported by S.

We now suppose for contradiction that our calculation of the signature is incorrect. We have already
shown that the signature must be at most |S| for some set S supporting a state in Ψstrong ∪Ψweak. Therefore,
we suppose that there is a smaller set S∗ which supports ψ whose intersection with B(s) is exactly the set
of vertices t−1

a (0) under ψ.
Consider the state ψ∗ extending ψ to B(s′) in which ta(v) is the arrival time of the foremost path from

S∗ to v (or ⊥ if there is no such path) and tp(v) = τ . Clearly ψ∗ ∈ Ψweak ∪ Ψstrong, and S∗ supports ψ∗.
This contradicts our assumption that S∗ was smaller than any set supporting a state in Ψweak ∪ Ψstrong.

Join Nodes
Let s be a join node with children s1 and s2.
Lemma 37. Let ψ1 = (ta,1, tp,1) and ψ2 = (ta,2, tp,2) be states of the children s1, s2 of a join node s. We
say that ψ1 and ψ2 coincide with the state ψ if
• ψ(v) = (0, 0) if and only if ψ1(v) = (0, 0) and ψ2(v) = (0, 0);
• for i ∈ {a, p} and all v ∈ B(s),

ti(v) =


min{ti,1(v), ti,2(v)} if ti,1(v), ti,2(v) ̸=⊥,
ti,1(v) if ti,2(v) =⊥≠ ti,1(v),
ti,2(v) if ti,1(v) =⊥≠ ti,2(v),
⊥, otherwise.

Then we calculate c(s, ψ) by

c(s, ψ) = min
ψ1,ψ2

{c(s1, ψ1) + c(s2, ψ2) − |t−1
a (0)|}.

where the minimum is taken over all pairs of states ψ1, ψ2 which coincide with ψ.

Proof. We begin by showing that a state ψ of a join node s is consistent if and only if there are consistent
states ψ1 and ψ2 of its children which coincide with ψ. We then give a proof of correctness of our calculation
of the signature.

Suppose that the states ψ1 and ψ2 are consistent for the nodes s1 and s2 respectively and they coincide
with the state ψ. Then, let S be the union of sets S1 and S2 which support ψ1 and ψ2 respectively. By our
assumption of consistency, all vertices in V (Gs) \ B(s) are temporally reachable from a vertex in S ∪ B(s)
and a foremost temporal path from a vertex in S arrives at each vertex u in B(s) at time ta(u). In addition,
if any forgotten vertex w which is not reached from S is temporally reachable from a vertex v ∈ B(s) by
a path departing at some time t ≻ tp,j(v) for j ∈ {1, 2}, then w must be temporally reached from v by a
temporal path departing at some time t ≻ tp(v). Therefore, ψ must be a consistent state of s.

We now assume that ψ is a consistent state of s supported by the set S. Suppose, for a contradiction, that
S supports ψ and there are no child states supported by S which coincide with ψ. There must be states for
which ta describes the earliest time of arrival of a path from S to any vertex in B(s1) and B(s2). Therefore,
if there do not exist states ψ1 and ψ2 supported by S, then there must be a vertex w in Gs1 \ B(s1) or
Gs2 \B(s2) which is not temporally reachable from a vertex in S ∪B(s). If this is the case, then ψ must also
be inconsistent. This is because, by construction of a tree decomposition, the only (temporal) path from a
vertex Gs1 \B(s1) to Gs2 \B(s2) or vice versa must traverse at least one vertex in B(s) = B(s1) = B(s2).
Therefore, if there is a temporal path from S or B(s) to each vertex in Gs \B(s), there must be a temporal
path from S ∪ B(s1) and S ∩ B(s2) to each vertex in Gs1 \ B(s1) and Gs2 \ B(s2) respectively. Therefore,
there exist child states supported by S.

The smallest set S that supports a consistent state of s must therefore be the smallest set that is the union
of sets S1 and S2 which support consistent states ψ1, ψ2 respectively of its children s1 and s2 which coincide.
To find the cardinality of this set, we employ the inclusion-exclusion principle. The only vertices which Gs1
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and Gs2 have in common are those in B(s). Therefore, c(s, ψ) = minψ1,ψ2{c(s1, ψ1) + c(s2, ψ2) − |t−1
a (0)|}

where the minimum is taken over pairs of states ψ1, ψ2 which coincide with ψ.

4.3.3 Running Time and Extensions
We note that for every vertex v in a bag, there are strictly fewer than (τ + 2)2 values of ψ(v). The number
of vertices in a bag is bounded by treewidth ω plus 1. Thus, there are less than (τ + 2)2(ω+1) states per
node. We now explore the running time of calculating the signature at each type of node. For leaf nodes,
the signature can only be one value; therefore this can be found in constant time. If we have the signatures
of all child states of an introduce node and we want to verify validity of a given state of that node, we need
to compute the value of av for the introduced vertex v, the reachability set Rta(v)

v and the earliest time of
arrival at each other vertex in the bag from v by a path departing at times t ≻ ta(v) and t′ ≻ tp(v).

The reachability set Rtv(G) can be computed in time O(n2) by a modified breadth first search algorithm
for any v and t. Hence it takes O(τn3) time to calculate Rtv(G) for every vertex v ∈ V and time t ∈ [τ ]. This
can be done as a preprocessing step before we begin working up the tree decomposition.

The earliest time of arrival of the two paths can be computed using a variation of breadth-first search and
thus takes O(ω2) time. The value av is computable in O(ω) time. In addition, for some cases in Nonstrict
TaRDiS we find the minimum signature of restrictions of the state where we change the value of ta for
some neighbours of v. Assuming all signatures of descendant nodes are calculated, this takes O(ω) time.
Therefore, computing the signature of all states of an introduce node requires O(ω2(τ)2(ω+1)) time.

For forget nodes, we must compare the signatures of multiple child states. There are O(τ2) of these
extensions for each state of the forget node. In addition, we compute the earliest time of arrival of a path
from any vertex in B(s) to v in the subgraph induced by B(s) with restrictions on its departure time. This
can be achieved by a variant of a breadth-first search which takes at most O(ω3) time. Thus, finding the
signature of all states of a forget node requires O(ω3(τ)2ω+4) time.

Finally, to compute the signature of the state of a join node, we must compare the states of both child
nodes which coincide with this state. For a given vertex in the bag of a join node, the number of values of
ψ1 and ψ2 which coincide with ψ(v) are bounded by O(τ4). Therefore, there are O(τ4(ω+1)) tuples of states
to consider when calculating the signature of ψ on s. Therefore, we calculate the signature of a state of a
join node in O(τ4(ω+1) · ω) time. Note that this dominates the time needed to generate all possible states
for a given bag.

We now combine the lemmas from this section to get the following theorem. We can find a tree decom-
position of width at most ω if one exists in linear time by Theorem 6. Lemma 34 states that we can find a
nice tree decomposition of width ω given a tree decomposition of width ω in linear time. We can recursively
compute the signature of a given state of a node using Lemmas 35, 36 and 37. We solve TaRDiS by finding
the signature c(r, ψ) of the root where the state ψ is the empty function which gives the cardinality of a
minimal TaRDiS.
Theorem 7. The algorithm described takes as input a temporal graph G consisting of n vertices with a
nice tree decomposition of width at most ω and solves Strict and Nonstrict TaRDiS on G in time
O(τ4(ω+1) · ω · n+ τn3).

We emphasize that τn3 is polynomial in the input size because τ ≤ E (recall, no snapshot in a temporal
graph is empty). The algorithm allows for edges to be active multiple times. That is, it is not restricted to
simple temporal graphs.

5 Parameterized complexity results for MaxMinTaRDiS
Having shown MaxMinTaRDiS is in ΣP2 , finding instances of tractability is even more surprising than with
the variants of the TaRDiS problem. We begin the following result, closely related to Lemma 33 which gives
us tractability when each component of the input to Strict MaxMinTaRDiS is restricted.
Lemma 38. Strict MaxMinTaRDiS is in FPT when parameterized by maximum degree ∆ in H and k.

Proof. Recall from Lemma 19 that (H, k) is a yes-instance of Strict MaxMinTaRDiS if and only if
(H, k − 1) is a no-instance of Dominating Set. Also, any pair (H, k) where H has maximum degree ∆
satisfying |V (H)| > k(∆ + 1) is trivially a no-instance of Dominating Set. Applying the same reasoning
as in our proof of Lemma 33, we obtain that Strict MaxMinTaRDiS is solvable in polynomial time when
∆ and k are bounded. If the input graph has at least k(∆ + 1) vertices then output YES, and otherwise
solve the problem (necessarily of bounded size) by brute-force.
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5.1 Existence of an fpt algorithm for MaxMinTaRDiS
We show tractability of our problems by expressing them in EMSO logic and applying the variant of Cour-
celle’s theorem given by Arnborg, Lagergren and Seese [55]. This result states that an optimisation problem
which is definable in EMSO can be solved in polynomial time when parameterized by treewidth and length
of the formula. The theorem is as follows.
Theorem 8 (adapted from [56], Theorem 30). Let P be an EMSO-definable problem, then one can solve P
on graphs G = (V,E) of order n := |V | and treewidth at most w in time O(fP (w) · poly(n)).

An extended monadic second order formula (EMSO) over a static graph H is a formula that uses:

1. the logical operators ∨, ∧, ¬, = and parentheses;
2. a finite set of variables, each of which takes an element of V (H) or E(H);
3. the quantifiers ∀ and ∃;
4. a finite set of variables which take subsets of the sets of edges or vertices;
5. integers.

We make use of the predicates ̸=, =⇒ , ⇐= , ⇐⇒ , ⊆, ∈ and \, which can be implemented using the
above. We note that formulas consisting only of the first 3 components is a first-order formula (FO). A
formula which is first order with the addition of the fourth bullet point is referred to as an MSO formula.
A more formal definition of an EMSO-definable problem is given by a survey by Langer, Reidl, Rossmanith
and Sikdar [56].
Theorem 9. MaxMinTaRDiS is fixed-parameter tractable when parameterized by lifetime, k and treewidth
of the graph.

Proof. The formal definition of EMSO given by Langer Reidl, Rossmanith and Sikdar [56] requires a weight
function bounded by a constant. Our weight function will be the cardinality of a TaRDiS, which is bounded
by k. Since the temporal assignment is not part of the input, we encode it as a partition of edges into sets
which correspond to the time at which they are active. The EMSO formula is constructed using the following
auxiliary subformulae
• card(k,X) tests whether a set X has cardinality at least k:

card(k,X) := ∃x1, . . . , xk ∈ X :
∧

1≤i<j≤k

xi ̸= xj .

• geq(X1, X2) tests whether |X1| ≥ |X2| for sets X1 and X2:

geq(X1, X2) := ∃k : card(k,X1) ∧ ¬card(k + 1, X2).

• part(S1, . . . , Sτ ) tests whether the sets of edges S1 . . . Sτ partition the edges of H:

part(S1, . . . , Sτ ) := ∀e ∈ E : ∨
1≤i≤τ

e ∈ Si ∧

 ∧
1≤j<i

e ̸∈ Sj

 ∧

 ∧
i<ℓ≤τ

e ̸∈ Sℓ

 .

The two right-most brackets can be ignored if we do not require that the temporal assignment is simple.
To enforce a happy temporal assignment, we can add the requirement that no two edges in the same set
share and endpoint. Recall that tractability of Happy MaxMinTaRDiS is shown with respect to lifetime
and k combined in Lemma 38. That is a stronger result than what we have here since Courcelle’s theorem
only gives tractability on graphs with bounded treewidth.
The following subformulae can be adapted to write TaRDiS in MSO logic.

• mconn(X,St) tests whether all vertices in a set X are in the same connected component of Gt.

mconn(X,St) := ∀Y ⊂ X,Y ̸= ∅, ∃x ∈ X,∃y ∈ Y \X : xy ∈ St

• mvconn(v, w, t) tests whether two vertices are in the same connected component of Gt:

mvconn(v, w, t) := ∃X ⊂ V : v ∈ X ∧ w ∈ X ∧ mconn(X,St).
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• mtadj tests whether two vertices v, w ∈ V are adjacent at time t:

mtadj(v, w, St) := ∃e ∈ St : v ∈ e ∧ w ∈ e.

• mpath tests whether there is a temporal path from v to w ∈ V with latest time τ :

mpath(v, w, S1, . . . , Sτ ) := ∃v0, . . . , vτ ∈ V :

v = v0 ∧ vτ = w ∧
τ−1∧
t=0

(vt = vt+1 ∨ a(vt, vt+1, St+1))

where a(v, w, St) can be substituted for mvconn(v, w, t) or mtadj(v, w, St) depending on whether we are
testing for nonstrict or strict temporal paths respectively.

• TaRDiS(S1, . . . , Sτ , X) which tests if every vertex is temporally reachable from X by a temporal path of
lifetime τ :

TaRDiS(S1, . . . , Sτ , X) := ∀v ∈ V (H),∃s ∈ X : mpath(s, v, S1, . . . , Sτ ).
• mTaRDiS(S1, . . . , Sτ , X) tests whether a set X is a minimum TaRDiS:

mTaRDiS(S1, . . . , Sτ , X) :=∀X ′ ⊂ V (H) : TaRDiS(S1, . . . , Sτ , X)∧
(TaRDiS(S1, . . . , Sτ , X

′) =⇒ geq(X ′, X)).

• MinTaRDiS(H, τ, k) which tests if there is temporal assignment with lifetime at most τ such that there
exists a minimum TaRDiS of size at least k on H:

MinTaRDiS(H, τ, k) := ∃X ⊂ V,∃S1, . . . , Sτ ⊂ E :
part(S1, . . . , Sτ ) ∧mTaRDiS(S1, . . . , Sτ , X) ∧ card(k,X).

Therefore MaxMinTaRDiS can be expressed in EMSO and the theorem holds.

Corollary 9. Temporal reachability is expressible in MSO logic.
Furthermore, we can use the expression to express TaRDiS in EMSO. This, however, gives a weaker

tractability result than Theorem 7.

6 Conclusions and open questions
In this paper, we introduce the TaRDiS and MaxMinTaRDiS problems and study their (parameterized)
complexity. We show a bound on the lifetime τ and a restriction to planar inputs combined are insufficient to
obtain tractability (Theorems 1, 4, and Corollary 7) and moreover tightly characterize the minimum lifetime
τ for which each problem becomes intractable. Further, we give an algorithm on a nice tree decomposition of
a temporal graph which gives tractability of TaRDiS with respect to lifetime and treewidth of the footprint
of the graph. In addition, we show that τ , k and the treewidth of the input graph combined are sufficient to
yield tractability in all cases of MaxMinTaRDiS by leveraging Courcelle’s theorem.

These results leave open the questions of the exact complexity of Nonstrict MaxMinTaRDiS with
lifetime τ ≥ 3 and Happy MaxMinTaRDiS with lifetime τ ≥ 4. An interesting extension of our work
would be to find approximability results for these problems. From the parameterized side, it remains to be
shown whether parameterization by a structural parameter of the footprint (e.g. treewidth) alone is sufficient
to obtain tractability for any of the considered variants. Another interesting dimension is the comparison
of Nonstrict MaxMinTaRDiS and Happy MaxMinTaRDiS when τ is lower-bounded by a function
of the number of edges m. With the constraint τ = m the two problems become equivalent, and their
computational complexity in this case is an interesting open question. Analogously to t-Dominating Set
[57], t-TaRDiS, in which t individuals must be reached provides a natural generalisation of our problem
and the potential for parameterization by t. Recall that, in Strict MaxMinTaRDiS, it is always optimal
to choose the constant function as our temporal assignment λ. It may be interesting to consider restrictions
on λ other than happiness which require the use of a non-constant temporal assignment (as in [58]) to make
the problem more interesting.
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