Skip to main content

Temporal Reachability Dominating Sets: Contagion in Temporal Graphs

  • Conference paper
  • First Online:
Algorithmics of Wireless Networks (ALGOWIN 2023)

Abstract

SARS-CoV-2 was independently introduced to the UK at least 1300 times by June 2020. Given a population with dynamic pairwise connections, we ask if the entire population could be (indirectly) infected by a small group of k initially infected individuals. We formalise this problem as the Temporal Reachability Dominating Set (TaRDiS) problem on temporal graphs. We provide positive and negative parameterized complexity results in four different parameters: the number k of initially infected, the lifetime \(\tau \) of the graph, the number of locally earliest edges in the graph, and the treewidth of the footprint graph \(\mathcal {G}_\downarrow \). We additionally introduce and study the MaxMinTaRDiS problem, which can be naturally expressed as scheduling connections between individuals so that a population needs to be infected by at least k individuals to become fully infected. Interestingly, we find a restriction of this problem to correspond exactly to the well-studied Distance-3 Independent Set problem on static graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a given \(n\in \mathbb N^{>0}\) we denote by [n] the set \(\{1,2,\ldots , n\}\).

  2. 2.

    In Casteigts et al.’s work [12], a temporal graph is happy if it is both simple (only one time per edge) and proper (every vertex incident to at most 1 edge at a time); under our definition, all temporal graphs are simple.

  3. 3.

    When \(\mathcal {G}\) is clear from context, we write \(R_u\) for \(R_u(\mathcal {G})\) and SR(Tv) for \(SR(T,\mathcal {G},v)\).

  4. 4.

    If \(e=(u,v)\) is an edge, u is said to be incident to vertex v and to edge e. Also, u is incident to a set S of vertices or edges if and only if it is incident to some element of S.

  5. 5.

    In this work, we say a temporal graph is planar if and only if its footprint is planar.

  6. 6.

    We say that two problems X and Y are equivalent if they have the same language - that is, an instance I is a yes-instance of X if and only if the same instance I is a yes-instance of Y. Where X has a language consisting of triples \((G,k,\tau )\) and Y has a language of tuples (Gk), we may say that Y is equivalent to X with \(\tau \) fixed to some value.

  7. 7.

    Intuitively, the treewidth \(\text {tw}(G)\) of a graph G represents how “treelike” G is. We refer the interested reader to Chap. 7 in [17].

  8. 8.

    In this work, by “each variant” we refer to the Strict, Nonstrict and Happy variants of the problems introduced in Sect. 1.1.

  9. 9.

    This mirrors Lemma 54 from [5].

  10. 10.

    The result in Theorem 1 generalizes to Strict TaRDiS and Nonstrict TaRDiS; D3IS and Dominating Set are NP-complete on planar graphs.

References

  1. Agnarsson, G., Damaschke, P., Halldórsson, M.M.: Powers of geometric intersection graphs and dispersion algorithms. Discret. Appl. Math. 132(1), 3–16 (2003). https://doi.org/10.1016/S0166-218X(03)00386-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: The complexity of optimal design of temporally connected graphs. Theory Comput. Syst. 61(3), 907–944 (2017). https://doi.org/10.1007/s00224-017-9757-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrida, E.C., Mertzios, G.B., Spirakis, P.G., Zamaraev, V.: Temporal vertex cover with a sliding time window. J. Comput. Syst. Sci. 107, 108–123 (2020). https://doi.org/10.1016/j.jcss.2019.08.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  MATH  Google Scholar 

  5. Balev, S., Pigné, Y., Sanlaville, E., Schoeters, J.: Temporally connected components (2023). https://hal.science/hal-03966327

  6. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6_23

    Chapter  Google Scholar 

  7. Bilò, D., D’Angelo, G., Gualà, L., Leucci, S., Rossi, M.: Blackout-tolerant temporal spanners. In: Erlebach, T., Segal, M. (eds.) ALGOSENSORS 2022. LNCS, vol. 13707, pp. 31–44. Lecture Notes in Computer Science, Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22050-0_3

    Chapter  Google Scholar 

  8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. arXiv e-prints p. cs/0611101 (2006). https://doi.org/10.48550/arXiv.cs/0611101. aDS Bibcode: 2006cs.......11101B

  9. Book, R.V.: Richard M. Karp. Reducibility among combinatorial problems. Complexity of computer computations, Proceedings of a Symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Center, Yorktown Heights, New York, edited by Raymond E. Miller and James W. Thatcher, Plenum Press, New York and London 1972, pp. 85–103. J. Symb. Logic 40(4), 618–619 (1975). https://doi.org/10.2307/2271828

  10. Braunstein, A., Ingrosso, A.: Inference of causality in epidemics on temporal contact networks. Sci. Rep. 6(1), 27538 (2016). https://doi.org/10.1038/srep27538

    Article  Google Scholar 

  11. Casteigts, A.: A journey through dynamic networks (with excursions). Thesis, Université de Bordeaux (2018). https://hal.science/tel-01883384

  12. Casteigts, A., Corsini, T., Sarkar, W.: Simple, strict, proper, happy: a study of reachability in temporal graphs (2022). https://arxiv.org/abs/2208.01720 [cs]

  13. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22450-8_27

    Chapter  Google Scholar 

  14. Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques admit sparse spanners. J. Comput. Syst. Sci. 121, 1–17 (2021). https://doi.org/10.1016/j.jcss.2021.04.004

    Article  MathSciNet  MATH  Google Scholar 

  15. Chia, M.L., Kuo, D., Tung, M.F.: The multiple originator broadcasting problem in graphs. Discret. Appl. Math. 155(10), 1188–1199 (2007). https://doi.org/10.1016/j.dam.2006.10.011

    Article  MathSciNet  MATH  Google Scholar 

  16. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of Graph Grammars and Computing By Graph Transformation: Volume 1: Foundations, pp. 313–400. World Scientific (1997)

    Google Scholar 

  17. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  18. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput. 24(4), 873–921 (1995). https://doi.org/10.1137/S0097539792228228

    Article  MathSciNet  MATH  Google Scholar 

  19. Enright, J., Meeks, K., Mertzios, G.B., Zamaraev, V.: Deleting edges to restrict the size of an epidemic in temporal networks. J. Comput. Syst. Sci. 119, 60–77 (2021). https://doi.org/10.1016/j.jcss.2021.01.007

    Article  MathSciNet  MATH  Google Scholar 

  20. Enright, J., Meeks, K., Skerman, F.: Assigning times to minimise reachability in temporal graphs. J. Comput. Syst. Sci. 115, 169–186 (2021). https://doi.org/10.1016/j.jcss.2020.08.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Erlebach, T., Hall, A.: NP-hardness of broadcast scheduling and inapproximability of single-source unsplittable min-cost flow. J. Sched. 7(3), 223–241 (2004). https://doi.org/10.1023/B:JOSH.0000019682.75022.96

    Article  MathSciNet  MATH  Google Scholar 

  22. Eto, H., Guo, F., Miyano, E.: Distance-$$d$$independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014). https://doi.org/10.1007/s10878-012-9594-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20

    Chapter  MATH  Google Scholar 

  24. Füchsle, E., Molter, H., Niedermeier, R., Renken, M.: Delay-robust routes in temporal graphs (2022). https://doi.org/10.48550/arXiv.2201.05390 [cs]

  25. Grigoryan, H.: Problems related to broadcasting in graphs. Ph.D. Concordia University (2013). https://spectrum.library.concordia.ca/id/eprint/977773/

  26. Haag, R., Molter, H., Niedermeier, R., Renken, M.: Feedback edge sets in temporal graphs. Discret. Appl. Math. 307, 65–78 (2022). https://doi.org/10.1016/j.dam.2021.09.029

    Article  MathSciNet  MATH  Google Scholar 

  27. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jakoby, A., Reischuk, R., Schindelhauer, C.: The complexity of broadcasting in planar and decomposable graphs. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 219–231. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4_50

    Chapter  Google Scholar 

  29. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 504–513. Association for Computing Machinery, New York (2000). https://doi.org/10.1145/335305.335364

  30. Klobas, N., Mertzios, G.B., Molter, H., Spirakis, P.G.: The complexity of computing optimum labelings for temporal connectivity. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, pp. 62:1–62:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.62. https://drops.dagstuhl.de/opus/volltexte/2022/16860

  31. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3_31

    Chapter  Google Scholar 

  32. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev. 13–14, 39–74 (2014). https://doi.org/10.1016/j.cosrev.2014.08.001

    Article  MATH  Google Scholar 

  33. Peleg, D.: Time-efficient broadcasting in radio networks: a review. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77115-9_1

    Chapter  Google Scholar 

  34. Pybus, O., Rambaut, A., COG-UK-Consortium, et al.: Preliminary analysis of SARS-CoV-2 importation & establishment of UK transmission lineages. Virological.org (2020)

    Google Scholar 

  35. Tang, J., et al.: Applications of temporal graph metrics to real-world networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. UCS, pp. 135–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_7

    Chapter  Google Scholar 

  36. Tippenhauer, S., Muzler, W.: On planar 3-SAT and its variants. Fachbereich Mathematik und Informatik der Freien Universitat Berlin (2016)

    Google Scholar 

  37. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5(2), 021005 (2015). https://doi.org/10.1103/PhysRevX.5.021005

    Article  Google Scholar 

  38. Verheije, M.: Algorithms for domination problems on temporal graphs. Ph.D. thesis, Utrecht University (2021). https://studenttheses.uu.nl/handle/20.500.12932/41240. Accepted: 2021–08-26T18:00:14Z

  39. Whitbeck, J., de Amorim, M.D., Conan, V., Guillaume, J.L.: Temporal reachability graphs (2012). https://doi.org/10.48550/arXiv.1207.7103 [cs]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Kutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutner, D.C., Larios-Jones, L. (2023). Temporal Reachability Dominating Sets: Contagion in Temporal Graphs. In: Georgiou, K., Kranakis, E. (eds) Algorithmics of Wireless Networks. ALGOWIN 2023. Lecture Notes in Computer Science, vol 14061. Springer, Cham. https://doi.org/10.1007/978-3-031-48882-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48882-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48881-8

  • Online ISBN: 978-3-031-48882-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics