Skip to main content

Recovering Single-Crossing Preferences from Approval Ballots

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2023)

Abstract

An electorate with fully-ranked innate preferences casts approval votes over a finite set of alternatives. As a result, only partial information about the true preferences is revealed to the voting authorities. In an effort to understand the nature of the true preferences given only partial information, one might ask whether the unknown innate preferences could possibly be single-crossing. The existence of a polynomial time algorithm to determine this has been asked as an outstanding problem in the works of Elkind and Lackner [18]. We hereby give a polynomial time algorithm determining a single-crossing collection of fully-ranked preferences that could have induced the elicited approval ballots, or reporting the nonexistence thereof. Moreover, we consider the problem of identifying negative instances with a set of forbidden sub-ballots, showing that any such characterization requires infinitely many forbidden configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is perhaps the main open question in the literature on proportional representation [26].

  2. 2.

    Recently, we learned that a solution has in fact been proposed as early as 1979 in the context of the simple plant location problem, by Beresnev and Davydov [4]. This paper is only available in Russian, and Russian-speaking experts seem to believe that the paper is likely missing steps in the arguments. Beresnev and Davydov [4] is referenced in [24], but without details.

  3. 3.

    For general partial orders, they show that PSC implies SSC, but not conversely.

  4. 4.

    This is used to prove the hardness of our problem for general weak orders, but the argument requires an unbounded number of indifference classes, so it does not work for bounded k..

  5. 5.

    If we replace our undirected graph by the directed implications graph and the word “connected” by “strongly-connected.”.

References

  1. Arrow, K.: Social Choice and Individual Values. John Wiley and Sons, Hoboken (1951)

    Google Scholar 

  2. Barberà, S., Moreno, B.: Top monotonicity: a common root for single peakedness, single crossing and the median voter result. Games Econ. Behav. 73, 345–359 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bartholdi, J., Trick, M.A.: Stable matching with preferences derived from a psychological model. Oper. Res. Lett. 5(4), 165–169 (1986)

    Article  MathSciNet  Google Scholar 

  4. Beresnev, V.L., Davydov, A.I.: On matrices with connectedness property. Upravlyaemye Sistemy 19 (1979). in Russian

    Google Scholar 

  5. Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional representation. J. Artif. Int. Res. 47(1), 475–519 (2013)

    MathSciNet  Google Scholar 

  6. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34 (1948)

    Article  Google Scholar 

  7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. JCSS 13(3), 335–379 (1976)

    MathSciNet  Google Scholar 

  8. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.): Handbook of Computational Social Choice, 1st edn. Cambridge University Press, USA (2016)

    Google Scholar 

  9. Bredereck, R., Chen, J., Woeginger, G.J.: A characterization of the single-crossing domain. Soc. Choice Welf. 41(4), 989–998 (2013)

    Article  MathSciNet  Google Scholar 

  10. Busing, F.M.T.A.: Advances in multidimensional unfolding. Ph.D. thesis (2010)

    Google Scholar 

  11. Chen, J., Hatschka, C., Simola, S.: Efficient algorithms for monroe and cc rules in multi-winner elections with (nearly) structured preferences. In: ECAI’23, pp. 397–404 (2023)

    Google Scholar 

  12. Constantinescu, A., Wattenhofer, R.: Recovering single-crossing preferences from approval ballots. arXiv:2310.03736 (2023)

  13. Constantinescu, A.C., Elkind, E.: Proportional representation under single-crossing preferences revisited. In: AAAI’21, vol. 35, no. 6, pp. 5286–5293 (2021)

    Google Scholar 

  14. Doignon, J.P., Falmagne, J.C.: A polynomial time algorithm for unidimensional unfolding representations. J. Algorithms 16(2), 218–233 (1994)

    Google Scholar 

  15. Elkind, E., Faliszewski, P.: Recognizing 1-Euclidean preferences: an alternative approach. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 146–157. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44803-8_13

    Chapter  Google Scholar 

  16. Elkind, E., Faliszewski, P., Lackner, M., Obraztsova, S.: The complexity of recognizing incomplete single-crossing preferences. In: AAAI’15, vol. 29, no. 1, February 2015

    Google Scholar 

  17. Elkind, E., Faliszewski, P., Slinko, A.: Clone structures in voters’ preferences. In: Proceedings of the ACM Conference on Electronic Commerce, pp. 496–513 (2012)

    Google Scholar 

  18. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: IJCAI’15, pp. 2019–2025 (2015)

    Google Scholar 

  19. Elkind, E., Lackner, M., Peters, D.: Preference restrictions in computational social choice: a survey (2022)

    Google Scholar 

  20. Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity, pp. 366–370. IOS Press, NLD (2008)

    Google Scholar 

  21. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield that never was: societies with single-peaked preferences are more open to manipulation and control. In: TARK’09, pp. 118–127. ACM, New York, NY, USA (2009)

    Google Scholar 

  22. Fitzsimmons, Z.: Single-peaked consistency for weak orders is easy. In: Ramanujam, R. (ed.) TARK’15, vol. 215, pp. 127–140 (2016)

    Google Scholar 

  23. Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints. In: IFIP TCS (2006)

    Google Scholar 

  24. Klinz, B., Rudolf, R., Woeginger, G.J.: Permuting matrices to avoid forbidden submatrices. Discret. Appl. Math. 60(1), 223–248 (1995)

    Article  MathSciNet  Google Scholar 

  25. Knoblauch, V.: Recognizing one-dimensional Euclidean preference profiles. J. Math. Econ. 46, 1–5 (2010)

    Google Scholar 

  26. Lackner, M., Skowron, P.: Multi-Winner Voting with Approval Preferences. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-09016-5

    Book  Google Scholar 

  27. Laslier, J.F., Sanver, M.R. (eds.): Handbook on Approval Voting. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02839-7

    Book  Google Scholar 

  28. Lu, T., Boutilier, C.: Budgeted social choice: from consensus to personalized decision making. In: IJCAI’11, pp. 280–286, January 2011

    Google Scholar 

  29. Magiera, K., Faliszewski, P.: Recognizing top-monotonic preference profiles in polynomial time. In: IJCAI’17, pp. 324–330 (2017)

    Google Scholar 

  30. Mattei, N., Walsh, T.: Preflib: a library for preferences http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 259–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_20

    Chapter  Google Scholar 

  31. Mirrlees, J.: An exploration in the theory of optimum income taxation. Rev. Econ. Stud. 38(2), 175–208 (1971)

    Article  Google Scholar 

  32. Peters, D.: Recognising multidimensional Euclidean preferences. In: AAAI’17, pp. 642–648 (2017)

    Google Scholar 

  33. Pierczyński, G., Skowron, P.: Core-stable committees under restricted domains. In: Hansen, K.A., Liu, T.X., Malekian, A. (eds.) Web and Internet Economics. WINE 2022. LNCS, vol. 13778, pp. 311–329. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22832-2_18

  34. Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving proportional representation. Soc. Choice Welf. 30, 353–362 (2008)

    Google Scholar 

  35. Roberts, K.: Voting over income tax schedules. J. Public Econ. 8(3), 329–340 (1977)

    Article  Google Scholar 

  36. Skowron, P., Yu, L., Faliszewski, P., Elkind, E.: The complexity of fully proportional representation for single-crossing electorates. Theor. Comput. Sci. 569, 43–57 (2015)

    Article  MathSciNet  Google Scholar 

  37. Sornat, K., Williams, V.V., Xu, Y.: Near-tight algorithms for the Chamberlin-courant and Thiele voting rules. In: De Raedt, L. (ed.) IJCAI’22, pp. 482–488 (2022)

    Google Scholar 

  38. Terzopoulou, Z., Karpov, A., Obraztsova, S.: Restricted domains of dichotomous preferences with possibly incomplete information, pp. 2023–2025. AAMAS’20 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Constantinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Constantinescu, A., Wattenhofer, R. (2024). Recovering Single-Crossing Preferences from Approval Ballots. In: Garg, J., Klimm, M., Kong, Y. (eds) Web and Internet Economics. WINE 2023. Lecture Notes in Computer Science, vol 14413. Springer, Cham. https://doi.org/10.1007/978-3-031-48974-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48974-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48973-0

  • Online ISBN: 978-3-031-48974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics