Skip to main content

Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2023)

Abstract

Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator’s side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://florestas.pt/conhecer/as-especies-florestais-mais-comuns-da-floresta-portuguesa.

  2. 2.

    https://store.opencv.ai/products/oak-d.

  3. 3.

    www.cvat.ai.

  4. 4.

    https://colab.research.google.com.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: ICCV (2019)

    Google Scholar 

  3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact++ better real-time instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 1108–1121 (2022). https://doi.org/10.1109/TPAMI.2020.3014297

    Article  Google Scholar 

  4. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2021). https://doi.org/10.1109/TPAMI.2019.2956516

    Article  Google Scholar 

  5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1280–1289 (2022). https://doi.org/10.1109/CVPR52688.2022.00135

  6. da Silva, D.Q., dos Santos, F.N., Filipe, V., Sousa, A.J.: Tree trunks cross-platform detection using deep learning strategies for forestry operations. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds.) ROBOT2022: fifth Iberian Robotics Conference, pp. 40–52. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-21065-5_4

  7. da Silva, D.Q., dos Santos, F.N., Filipe, V., Sousa, A.J., Oliveira, P.M.: Edge AI-based tree trunk detection for forestry monitoring robotics. Robotics 11(6) (2022). https://doi.org/10.3390/robotics11060136

  8. da Silva, D.Q., dos Santos, F.N., Sousa, A.J., Filipe, V., Boaventura-Cunha, J.: Unimodal and multimodal perception for forest management: review and dataset. Computation 9(12) (2021). https://doi.org/10.3390/computation9120127

  9. da Silva, D.Q., dos Santos, F.N., Sousa, A.J., Filipe, V.: Visible and thermal image-based trunk detection with deep learning for forestry mobile robotics. J. Imaging 7(9) (2021). https://doi.org/10.3390/jimaging7090176

  10. FAO: The State of the World’s Forests 2022, p. 28. FAO, Rome (2022)

    Google Scholar 

  11. Ferreira, D., Morais, S.: Seleção de varas - Manual técnico de apoio á gestão de talhadias (2022)

    Google Scholar 

  12. Fortin, J.M., Gamache, O., Grondin, V., Pomerleau, F., Giguère, P.: Instance segmentation for autonomous log grasping in forestry operations. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6064–6071 (2022). https://doi.org/10.1109/IROS47612.2022.9982286

  13. Fritz, A., Kattenborn, T., Koch, B.: UAV-based photogrammetric point clouds—Tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2(September), pp. 141–146 (2013). https://doi.org/10.5194/isprsarchives-xl-1-w2-141-2013

  14. Gomide, L., Mello, J., Acerbi Júnior, F., Scolforo, J.: Automated selective thinning via multicriteria maetaheuristic procedure. Scientia Forestalis/Forest Sci. 42, 299–306 (2014)

    Google Scholar 

  15. Grondin, V., Fortin, J.M., Pomerleau, F., Giguère, P.: Tree detection and diameter estimation based on deep learning. Forest.: Int. J. Forest Res. (2022)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  17. Jocher, G.: YOLOv5 by Ultralytics (2020). https://doi.org/10.5281/zenodo.3908559

  18. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023)

    Google Scholar 

  19. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  20. Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wȩżyk, P., Kuželka, K., Surový, P., Klimánek, M., Ziȩba-Kulawik, K., Bobrowski, R., Liang, X.: Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int. J. Appl. Earth Observ. Geoinf. 104 (2021). https://doi.org/10.1016/j.jag.2021.102512

  21. Söderbergh, I., Ledermann, T.: Algorithms for simulating thinning and harvesting in five European individual-tree growth simulators: a review. Comput. Electron. Agric. 39(2), 115–140 (2003). https://doi.org/10.1016/S0168-1699(03)00022-X

    Article  Google Scholar 

  22. Vestlund, K., Hellström, T.: Requirements and system design for a robot performing selective cleaning in young forest stands. J. Terrramech. 43(4), 505–525 (2006). https://doi.org/10.1016/j.jterra.2005.07.001

    Article  Google Scholar 

  23. Vestlund, K., Nordfjell, T., Eliasson, L.: Comparison of human and computer-based selective cleaning. Silva Fennica Monogr. 39(4), 509–523 (2005). https://doi.org/10.14214/sf.363

  24. Vestlund, K., Nordfjell, T., Eliasson, L., Karlsson, A.: A decision support system for selective cleaning. Silva Fennica 40(2), 271–289 (2006). https://doi.org/10.14214/sf.343

  25. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). arXiv:2207.02696

  26. Zhen, Z., Quackenbush, L.J., Zhang, L.: Trends in automatic individual tree crown detection and delineation-evolution of LiDAR data. Remote Sens. 8(4), 1–26 (2016). https://doi.org/10.3390/rs8040333

    Article  Google Scholar 

Download references

Acknowledgment

This work is financed by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020. This work is also financed by the ERDF-European Regional Development Fund, through the Operational Programme for Competitiveness and Internationalisation-COMPETE 2020 Programme under the Portugal 2020 Partnership Agreement, within project SMARTCUT, with reference POCI-01-0247-FEDER-048183. Daniel Queirós da Silva thanks the FCT-Foundation for Science and Technology, Portugal for the Ph.D. Grant UI/BD/152564/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Queirós da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, D.Q., Rodrigues, T.F., Sousa, A.J., dos Santos, F.N., Filipe, V. (2023). Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science(), vol 14116. Springer, Cham. https://doi.org/10.1007/978-3-031-49011-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49011-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49010-1

  • Online ISBN: 978-3-031-49011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics