Skip to main content

Face Image Quality Estimation on Presentation Attack Detection

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14469))

Included in the following conference series:

  • 661 Accesses

Abstract

Non-referential Face Image Quality Assessment (FIQA) methods have gained popularity as a pre-filtering step in Face Recognition (FR) systems. In most of them, the quality score is usually designed with face comparison in mind. However, a small amount of work has been done on measuring their impact and usefulness on Presentation Attack Detection (PAD). In this paper, we study the effect of quality assessment methods on filtering bona fide and attack samples, their impact on PAD systems, and how the performance of such systems is improved when training on a filtered (by quality) dataset. On a Vision Transformer PAD algorithm, a reduction of 20% of the training dataset by remoing lower-quality samples allowed us to improve the Bona fide Presentation Classification Error Rate (BPCER) by 3% in a cross-dataset test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.iso.org/standard/67381.html.

  2. 2.

    https://www.ibeta.com/biometric-spoofing-pad-testing.

  3. 3.

    https://pages.nist.gov/frvt/html/frvt_pad.html.

  4. 4.

    This file text will be available for reproducibility.

  5. 5.

    This dataset is sequestered available only for evaluation.

  6. 6.

    https://www.iso.org/standard/67381.html.

References

  1. Alam, S., et al.: (2021), https://github.com/kedro-org/kedro

  2. Benalcazar, D., Tapia, J.E., Gonzalez, S., Busch, C.: Synthetic ID card image generation for improving presentation attack detection. arxiv:2211.00098 (2022)

  3. Bhogal, A.P.S., Söllinger, D., Trung, P., Uhl, A.: Non-reference image quality assessment for biometric presentation attack detection. In: 5th Intl. Workshop on Biometrics and Forensics (IWBF), pp. 1–6 (2017)

    Google Scholar 

  4. Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: 12th IEEE Intl. Conf. on Automatic Face Gesture Recognition (FG 2017), pp. 612–618 (2017)

    Google Scholar 

  5. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Google Scholar 

  6. Cai, Y., Lim, L.H.: Distances between probability distributions of different dimensions. IEEE Trans. on Inf. Theory 68(6), 4020–4031 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, H.H., Yeh, C.H.: Face anti-spoofing detection based on multi-scale image quality assessment. Image Vis. Comput. 121, 104428 (2022)

    Article  Google Scholar 

  8. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2012)

    Google Scholar 

  9. Costa-Pazo, A., Bhattacharjee, S., Vazquez-Fernandez, E., Marcel, S.: The replay-mobile face presentation-attack database. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2016)

    Google Scholar 

  10. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Feng, L., et al.: Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J. Vis, Commn. Image Representation 38, 451–460 (2016)

    Google Scholar 

  12. Fourati, E., Elloumi, W., Chetouani, A.: Anti-spoofing in face recognition-based biometric authentication using image quality assessment. Multimed. Tools Appl. 79, 865–889 (2020)

    Google Scholar 

  13. Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. George, A., Marcel, S.: On the effectiveness of vision transformers for zero-shot face anti-spoofing. In: IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8 (2021)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Howard, A., et al.: Searching for mobilenetv3 (2019), https://arxiv.org/abs/1905.02244

  17. Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4396–4405 (2019)

    Google Scholar 

  19. Kumar, S., Singh, S., Kumar, J.: A comparative study on face spoofing attacks. In: International Conference on Computing, Communication and Automation (ICCCA), pp. 1104–1108 (2017)

    Google Scholar 

  20. Marcel, S., Nixon, M.S., Fierrez, J., Evans, N. (eds.): Handbook of Biometric Anti-Spoofing. ACVPR, Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92627-8

    Book  Google Scholar 

  21. Meng, Q., Zhao, S., Huang, Z., Zhou, F.: MagFace: a universal representation for face recognition and quality assessment. In: CVPR (2021)

    Google Scholar 

  22. Ou, F.Z., et al.: SDD-FIQA: Unsupervised face image quality assessment with similarity distribution distance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7666–7675 (2021)

    Google Scholar 

  23. Pinto, A., Schwartz, W.R., Pedrini, H., Rocha, A.d.R.: Using visual rhythms for detecting video-based facial spoof attacks. IEEE Trans. on Inf. Forensics Secur. 10(5), 1025–1038 (2015)

    Google Scholar 

  24. Schlett, T., Rathgeb, C., Henniger, O., Galbally, J., Fierrez, J., Busch, C.: Face image quality assessment: a literature survey. ACM Comput. Surv. 54, 1–49(2022)

    Google Scholar 

  25. Tapia, J.E., Gonzalez, S., Busch, C.: Iris liveness detection using a cascade of dedicated deep learning networks. IEEE Trans. Inf. Forensics Secur. 17, 42–52 (2022)

    Google Scholar 

  26. Tapia, J.E., Valenzuela, A., Lara, R., Gomez-Barrero, M., Busch, C.: Selfie periocular verification using an efficient super-resolution approach. IEEE Access 10, 67573–67589 (2022)

    Article  Google Scholar 

  27. Terhörst, P., Kolf, J.N., Damer, N., Kirchbuchner, F., Kuijper, A.: SER-FIQ: unsupervised estimation of face image quality based on stochastic embedding robustness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition CVPR, Seattle, WA, USA, June 13-19, 2020, pp. 5650–5659. IEEE (2020)

    Google Scholar 

  28. Wasnik, P., Raja, K.B., Ramachandra, R., Busch, C.: Assessing face image quality for smartphone based face recognition system. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6 (2017)

    Google Scholar 

  29. Wightman, R.: Pytorch image models (2019)

    Google Scholar 

  30. Yeh, C.H., Chang, H.H.: Face liveness detection based on perceptual image quality assessment features with multi-scale analysis. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 49–56 (2018)

    Google Scholar 

  31. Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., Zhao, G.: Deep learning for face anti-spoofing: a survey. arXiv preprint arXiv:2106.14948 (2021)

  32. Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G.: NAS-FAS: static-dynamic central difference network search for face anti-spoofing. In: TPAMI (2020)

    Google Scholar 

  33. Zhang, Y., et al.: CelebA-Spoof: large-scale face anti-spoofing dataset with rich annotations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 70–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_5

    Chapter  Google Scholar 

  34. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition (CVPR). IEEE (2017)

    Google Scholar 

  35. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 883356 and the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Tapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aravena, C., Pasmiño, D., Tapia, J., Busch, C. (2024). Face Image Quality Estimation on Presentation Attack Detection. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics