Skip to main content

Multi-conformation Aproach of ENM-NMA Dynamic-Based Descriptors for HIV Drug Resistance Prediction

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2023)

Abstract

Drug resistance is a key factor in the failure of drug therapy, as the antiretroviral therapy against the human immunodeficiency virus (HIV). Due to the high costs of direct phenotypic assays, genotypic assays, based on sequencing of the viral genome or part of it, are commonly used to infer drug resistance via in silico predictions. In these approaches, the interpretation of the sequence information constitutes the biggest challenge. The large amount of data linking genotype and phenotype information provides a framework for predicting drug resistance from genotype, based on machine learning methods. Primarily, the sequence based information is used but largely fails to predict resistance in previously unobserved variants. The inclusion of structural and dynamic information is supposed to improve the predictions but has been limited by their computational cost of calculation. This study shows the feasibility of dynamic descriptors derived from normal mode analysis in elastic network models of HIV type 1 (HIV-1) protease in predicting drug resistance. We show that exploring the pre-configuration of dynamic information covering the intrinsic movement spectrum of proteinase in HIV-1 by multiple conformation approach descriptors improve the classification task.

Work partially funded by TED2021-809 131003B-C21 and PID2022-137048OB-C41 projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agniswamy, J., Shen, C.H., Aniana, A., Sayer, J.M., Louis, J.M., Weber, I.T.: Hiv-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochemistry 51(13), 2819–2828 (2012)

    Article  Google Scholar 

  2. Alford, R.F., et al.: The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13(6), 3031–3048 (2017)

    Google Scholar 

  3. Bauer, J.A., Bauerová-Hlinková, V.: Normal mode analysis: a tool for better understanding protein flexibility and dynamics with application to homology models. In: Homology Molecular Modeling-Perspectives and Applications, pp. 1–19. IntechOpen (2020)

    Google Scholar 

  4. Bonet, I., Arencibia, J., Pupo, M., Rodriguez, A., Garcia, M.M., Grau, R.: Multi-classifier based on hard instances-new method for prediction of human immunodeficiency virus drug resistance. Curr. Top. Med. Chem. 13(5), 685–695 (2013). https://doi.org/10.2174/1568026611313050011

  5. Bonet, I., García, M.M., Saeys, Y., Van de Peer, Y., Grau, R.: Predicting human immunodeficiency virus (HIV) drug resistance using recurrent neural networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 234–243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73053-8_23

  6. Cai, Q., Yuan, R., He, J., Li, M., Guo, Y.: Predicting HIV drug resistance using weighted machine learning method at target protein sequence-level. Mol. Diversity 25, 1541–1551 (2021)

    Article  Google Scholar 

  7. Cui, Q., Bahar, I.: Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. CRC Press (2005)

    Google Scholar 

  8. Davis, I.W., Baker, D.: Rosettaligand docking with full ligand and receptor flexibility. J. Mol. Biol. 385(2), 381–392 (2009)

    Article  Google Scholar 

  9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ferreiro, D., Khalil, R., Gallego, M.J., Osorio, N.S., Arenas, M.: The evolution of the HIV-1 protease folding stability. Virus Evolution 8(2), veac115 (2022)

    Google Scholar 

  11. Gari, J.A.J.: Assessing ENM-NMA based molecular descriptors of HIV-1 protease for drug resistance prediction by machine learning methods. Rev. Cubana Ciencias Inf. 17(1) (2023)

    Google Scholar 

  12. Grant, B.J., Rodrigues, A.P., ElSawy, K.M., McCammon, J.A., Caves, L.S.: Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21), 2695–2696 (2006)

    Article  Google Scholar 

  13. Hornak, V., Okur, A., Rizzo, R.C., Simmerling, C.: Hiv-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc. Nat. Acad. Sci. 103(4), 915–920 (2006)

    Article  Google Scholar 

  14. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopoly. Orig. Res. Biomolecul. 22(12), 2577–2637 (1983)

    Google Scholar 

  15. Laxminarayan, R., Bhutta, Z., Duse, A.: The International Bank for Reconstruction and Development/The World Bank, Chap. 55. Oxford University Press, Washington, DC; New York (2006)

    Google Scholar 

  16. Meiler, J., Baker, D.: Rosettaligand: protein-small molecule docking with full side-chain flexibility. Proteins Struct. Funct. Bioinform. 65(3), 538–548 (2006)

    Google Scholar 

  17. Metzner, K.J.: Technologies for hiv-1 drug resistance testing: inventory and needs. Curr. Opin. HIV AIDS 17(4), 222–228 (2022)

    Article  Google Scholar 

  18. Parikh, U.M., Mellors, J.W.: How could HIV-1 drug resistance impact preexposure prophylaxis for HIV prevention? Curr. Opin. HIV AIDS 17(4), 213–221 (2022)

    Article  Google Scholar 

  19. Paulsen, J.L., Leidner, F., Ragland, D.A., Kurt Yilmaz, N., Schiffer, C.A.: Interdependence of inhibitor recognition in HIV-1 protease. J. Chem. Theory Comput. 13(5), 2300–2309 (2017)

    Article  Google Scholar 

  20. Pawar, S.D., Freas, C., Weber, I.T., Harrison, R.W.: Analysis of drug resistance in HIV protease. BMC Bioinformatics 19(11), 362 (2018). https://doi.org/10.1186/s12859-018-2331-y

  21. Ramon, E., Belanche-Muñoz, L., Pérez-Enciso, M.: Hiv drug resistance prediction with weighted categorical kernel functions. BMC Bioinformatics 20(1), 1–13 (2019)

    Article  Google Scholar 

  22. Riemenschneider, M., Heider, D.: Current approaches in computational drug resistance prediction in HIV. Curr. HIV Res. 14(4), 307–315 (2016)

    Article  Google Scholar 

  23. Saha, M., Sarkar, A.: Review on multiple facets of drug resistance: a rising challenge in the 21st century. J. Xenobiot. 11(4), 197–214 (2021)

    Article  Google Scholar 

  24. Shabanpour, Y., Sajjadi, S., Behmard, E., Abdolmaleki, P., Keihan, A.H.: The structural, dynamic, and thermodynamic basis of darunavir resistance of a heavily mutated HIV-1 protease using molecular dynamics simulation. Front. Molecul. Biosci. 9 (2022)

    Google Scholar 

  25. Sheik Amamuddy, O., Bishop, N.T., Tastan Bishop, Ö.: Improving fold resistance prediction of HIV-1 against protease and reverse transcriptase inhibitors using artificial neural networks. BMC Bioinformatics 18(1), 1–7 (2017)

    Article  Google Scholar 

  26. Shen, C., Yu, X., Harrison, R.W., Weber, I.T.: Automated prediction of HIV drug resistance from genotype data. BMC Bioinformatics 17(8), 563–569 (2016)

    Google Scholar 

  27. Simon, V., Ho, D.D.: Hiv-1 dynamics in vivo: implications for therapy. Nat. Rev. Microbiol. 1(3), 181–190 (2003)

    Article  Google Scholar 

  28. Steiner, M.C., Gibson, K.M., Crandall, K.A.: Drug resistance prediction using deep learning techniques on HIV-1 sequence data (2020). https://doi.org/10.3390/v12050560

  29. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14(1), 1–6 (2001)

    Article  Google Scholar 

  30. Tozzini, V., Trylska, J., Chang, C.E., McCammon, J.A.: Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. J. Struct. Biol. 157(3), 606–615 (2007)

    Google Scholar 

  31. de Vera, I.M.S., Smith, A.N., Dancel, M.C.A., Huang, X., Dunn, B.M., Fanucci, G.E.: Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease. Biochemistry 52(19), 3278–3288 (2013)

    Article  Google Scholar 

  32. Wang, R., Zheng, Q.: Multiple molecular dynamics simulations and energy analysis unravel the dynamic properties and binding mechanism of mutants HIV-1 protease with DRV and CA-P2. Microbiol. Spect. 10(2), e00748-21 (2022)

    Article  Google Scholar 

  33. Weber, I.T., Harrison, R.W.: Tackling the problem of HIV drug resistance. Postępy Biochemii 62(3), 273–279 (2016)

    Article  Google Scholar 

  34. Wittayanarakul, K., et al.: Insights into saquinavir resistance in the g48v HIV-1 protease: quantum calculations and molecular dynamic simulations. Biophys. J . 88(2), 867–879 (2005)

    Google Scholar 

  35. Wittayanarakul, K., et al.: Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. J. Chem. Inf. Model. 45(2), 300–308 (2005)

    Google Scholar 

  36. Yang, L., Song, G., Carriquiry, A., Jernigan, R.L.: Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 16(2), 321–330 (2008)

    Article  Google Scholar 

  37. Yao, X.Q., et al.: Dynamic coupling and allosteric networks in the \(\alpha \) subunit of heterotrimeric g proteins. J. Biol. Chem. 291(9), 4742–4753 (2016)

    Google Scholar 

  38. Yu, X., Weber, I.T., Harrison, R.W.: Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure. BMC Genom. 15(5), S1 (2014). https://doi.org/10.1186/1471-2164-15-S5-S1

  39. Zhang, Y., Chang, Y.C.E., Louis, J.M., Wang, Y.F., Harrison, R.W., Weber, I.T.: Structures of darunavir-resistant HIV-1 protease mutant reveal atypical binding of darunavir to wide open flaps. ACS Chem. Biol. 9(6), 1351–1358 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Jimenez-Gari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez-Gari, J.A., Pupo-Meriño, M., Gonzalez, H.R., Ferri, F.J. (2024). Multi-conformation Aproach of ENM-NMA Dynamic-Based Descriptors for HIV Drug Resistance Prediction. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics