Abstract
Uniqueness and Uniformity are two important quality metrics that determine the practical usability of a strong Physically Unclonable Function (“strong PUF”) instance, or an ensemble of strong PUF instances. In this paper, we consider the strong PUF instance as a Boolean function, and theoretically enumerate the total number of usable single-output practical strong PUF instances, assuming commonly acceptable thresholds of the Uniqueness and Uniformity metrics. We have computed the number of possible strong PUF instances with ideal Uniformity (= 0.50), and Uniformity within an acceptable range of the ideal value, and the same for Uniqueness. Additionally, given an ideal Uniformity, we have enumerated the number of strong PUF instances with ideal Uniqueness (= 0.50), and Uniqueness within an acceptable range. Our analysis is completely generic and applicable to any PUF variant, independent of its structure and operating principle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feiten, L., Sauer, M., Becker, B.: On metrics to quantify the inter-device uniqueness of PUFs. Cryptology ePrint Archive, Paper 2016/320 (2016). https://eprint.iacr.org/2016/320
Ganji, F.: On the Learnability of Physically Unclonable Functions. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76717-8
Ganji, F., Tajik, S., Fäßler, F., Seifert, J.-P.: Strong machine learning attack against PUFs with no mathematical model. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 391–411. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_19
Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: 18th Annual Computer Security Applications Conference, 2002. Proceedings, pp. 149–160 (2002). https://doi.org/10.1109/CSAC.2002.1176287
Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the Design Automation Conference (DAC) (2007)
Harne, S., Badshah, V., Verma, V.: Fibonacci and Lucas polynomial identities, binomial coefficients and pascal’s triangle. Int. J. Math. Res. 7(1), 7–13 (2015)
Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)
Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGAs. In: 2010 International Conference on Reconfigurable Computing and FPGAs, pp. 298–303 (2010)
Lim, D., Devadas, S.: Extracting secret keys from integrated circuits. S.M. Thesis, Massachusetts Institute of Technology (2004). https://hdl.handle.net/1721.1/18059
Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(10), 1200–1205 (2005)
Maitra, S., Mandal, B., Martinsen, T., Roy, D., Stănică, P.: Analysis on Boolean function in a restricted (Biased) domain. IEEE Trans. Inf. Theory 66(2), 1219–1231 (2020). https://doi.org/10.1109/TIT.2019.2932739
Ravikanth, P.S., Benton, S.A.: Physical one-way functions. Science 297, 2026–2030 (2001)
Roy, A., Roy, D., Maitra, S.: How do the arbiter PUFs sample the Boolean function class? In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 111–130. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Balijabudda, V.S., Acharya, K., Chakraborty, R.S., Chakrabarti, I. (2023). Theoretical Enumeration of Deployable Single-Output Strong PUF Instances Based on Uniformity and Uniqueness Constraints. In: Muthukkumarasamy, V., Sudarsan, S.D., Shyamasundar, R.K. (eds) Information Systems Security. ICISS 2023. Lecture Notes in Computer Science, vol 14424. Springer, Cham. https://doi.org/10.1007/978-3-031-49099-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-49099-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49098-9
Online ISBN: 978-3-031-49099-6
eBook Packages: Computer ScienceComputer Science (R0)