Skip to main content

Attack Graph Based Security Metrics for Dynamic Networks

  • Conference paper
  • First Online:
Information Systems Security (ICISS 2023)

Abstract

Evaluating network attack graphs in today’s dynamic networks poses a challenge. Conventional metrics used for attack graph based risk assessment are inadequate due to their inability to consider temporal evolution of networks. To address this limitation, we introduce the notion of temporal attack graph, which incorporates the temporal characteristics of network configurations and vulnerabilities. It provides a notion for risk assessment by providing a more precise depiction of the network’s security state over time. In addition, we introduce two security metrics based on temporal attack graphs. By effectively capturing the temporal features of dynamic networks, these metrics enable accurate measurement of network security over time. Path-based metrics analyze whether an attacker can reach a target along a specific temporal path. These metrics help in evaluating overall robustness of the network and adopting appropriate security counter measures beforehand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://neo4j.com/.

References

  1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, pp. 217–224. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/586110.586140

  2. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 273–284 (2002)

    Google Scholar 

  3. Albanese, M., Jajodia, S., Pugliese, A., Subrahmanian, V.S.: Scalable analysis of attack scenarios. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 416–433. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2_23. http://dl.acm.org/citation.cfm?id=2041225.2041255

  4. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hardening using attack graphs. In: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012), pp. 1–12 (2012)

    Google Scholar 

  5. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14, 267–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yusuf, S.E., Ge, M., Hong, J.B., Alzaid, H., Kim, D.S.: Evaluating the effectiveness of security metrics for dynamic networks. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 277–284 (2017)

    Google Scholar 

  7. Enoch, S.Y., Ge, M., Hong, J.B., Alzaid, H., Kim, D.S.: A systematic evaluation of cybersecurity metrics for dynamic networks. Comput. Netw. 144, 216–229 (2018). https://www.sciencedirect.com/science/article/pii/S1389128618306285

  8. Bopche, G.S., Mehtre, B.M.: Attack graph generation, visualization and analysis: issues and challenges. In: Mauri, J.L., Thampi, S.M., Rawat, D.B., Jin, D. (eds.) SSCC 2014. CCIS, vol. 467, pp. 379–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44966-0_37

    Chapter  Google Scholar 

  9. Noel, S., Jajodia, S.: A suite of metrics for network attack graph analytics. In: Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Metrics, pp. 141–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4_7

    Chapter  Google Scholar 

  10. Frigault, M., Wang, L., Jajodia, S., Singhal, A.: Measuring the overall network security by combining CVSS scores based on attack graphs and Bayesian networks. In: Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Metrics, pp. 1–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4_1

    Chapter  Google Scholar 

  11. Noel, S., Jajodia, S.: Metrics suite for network attack graph analytics. In: Proceedings of the 9th Annual Cyber and Information Security Research Conference, CISR 2014, pp. 5–8. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2602087.2602117

  12. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-zero day safety: evaluating the resilience of networks against unknown attacks. In: Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Metrics, pp. 75–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4_4

    Chapter  Google Scholar 

  13. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp. 283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70567-3_22

    Chapter  Google Scholar 

  14. Enoch, S.Y., Hong, J.B., Ge, M., Kim, D.S.: Composite metrics for network security analysis. CoRR abs/2007.03486 (2020). https://arxiv.org/abs/2007.03486

  15. ISO/IEC 27005: Information technology-security techniques-information security risk management. ISO/IEC 44 (2008)

    Google Scholar 

  16. Popov, O.: Priorities for research on current and emerging network technologies. ENISA (European Network and Information Security Agency) (2010)

    Google Scholar 

  17. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71, 046119 (2005). https://doi.org/10.1103/PhysRevE.71.046119

    Article  Google Scholar 

  18. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. CoRR abs/1012.0009 (2010). http://arxiv.org/abs/1012.0009

  19. Tang, J.K.: Temporal network metrics and their application to real world networks. Ph.D. thesis, Robinson College, University of Cambridge (2011)

    Google Scholar 

  20. Tang, J., et al.: Applications of temporal graph metrics to real-world networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks, pp. 135–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_7

    Chapter  Google Scholar 

  21. Rossetti, G., Guidotti, R., Pennacchioli, D., Pedreschi, D., Giannotti, F.: Interaction prediction in dynamic networks exploiting community discovery. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM 2015, pp. 553–558. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2808797.2809401

  22. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51, 1–37 (2018). https://doi.org/10.1145/3172867

    Article  Google Scholar 

  23. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Min. 8, 1–29 (2018). https://doi.org/10.1007/s13278-018-0537-7

    Article  MATH  Google Scholar 

  25. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012). https://www.sciencedirect.com/science/article/pii/S0370157312000841

  26. Casteigts, A., Meeks, K., Mertzios, G.B., Niedermeier, R.: Temporal graphs: structure, algorithms, applications (dagstuhl seminar 21171). In: Dagstuhl Reports, vol. 11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  27. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving networks. Phys. Rev. E 83, 046120 (2011)

    Article  Google Scholar 

  28. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). https://doi.org/10.1103/PhysRevLett.87.198701

    Article  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  30. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. ACM SIGCOMM Comput. Commun. Rev. 40, 118–124 (2010)

    Article  Google Scholar 

  31. Noel, S.: A review of graph approaches to network security analytics. In: Samarati, P., Ray, I., Ray, I. (eds.) From Database to Cyber Security. LNCS, vol. 11170, pp. 300–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04834-1_16

    Chapter  Google Scholar 

  32. Lallie, H.S., Debattista, K., Bal, J.: A review of attack graph and attack tree visual syntax in cyber security. Comput. Sci. Rev. 35, 100219 (2020). https://www.sciencedirect.com/science/article/pii/S1574013719300772

  33. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing, and predicting intrusion alerts. Comput. Commun. 29, 2917–2933 (2006). https://doi.org/10.1016/j.comcom.2006.04.001

    Article  Google Scholar 

  34. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabilities. In: Proceeding 2000 IEEE Symposium on Security and Privacy, S &P 2000, pp. 156–165. IEEE (2000)

    Google Scholar 

  35. Jajodia, S., Noel, S.: Topological vulnerability analysis: a powerful new approach for network attack prevention, detection, and response. In: Algorithms, Architectures and Information Systems Security, pp. 285–305. World Scientific (2009)

    Google Scholar 

  36. Jajodia, S., Noel, S., O’berry, B.: Topological analysis of network attack vulnerability. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Approaches, and Challenges, vol. 5, pp. 247–266. Springer, Boston (2005). https://doi.org/10.1007/0-387-24230-9_9

    Chapter  Google Scholar 

  37. A Nessus scanner. https://www.tenable.com/products/nessus

  38. A Retina IoT (RIoT). https://sss.gd/uvAbx

  39. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium, SSYM 2005, vol. 14, p. 8. USENIX Association (2005)

    Google Scholar 

  40. Ceri, S., Gottlob, G., Tanca, L., et al.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 146–166 (1989)

    Article  Google Scholar 

  41. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine. ACM SIGMOD Rec. 23, 442–453 (1994)

    Article  Google Scholar 

  42. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern network attacks and countermeasures using attack graphs. In: 2009 Annual Computer Security Applications Conference, pp. 117–126 (2009)

    Google Scholar 

Download references

Acknowledgement

Authors would like to express their sincere thanks to the anonymous reviewers for their invaluable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Gain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gain, A., Barik, M.S. (2023). Attack Graph Based Security Metrics for Dynamic Networks. In: Muthukkumarasamy, V., Sudarsan, S.D., Shyamasundar, R.K. (eds) Information Systems Security. ICISS 2023. Lecture Notes in Computer Science, vol 14424. Springer, Cham. https://doi.org/10.1007/978-3-031-49099-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49099-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49098-9

  • Online ISBN: 978-3-031-49099-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics