Skip to main content

The Heterogeneous Rooted Tree Cover Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14423))

Included in the following conference series:

  • 536 Accesses

Abstract

We consider the heterogeneous rooted tree cover (HRTC) problem. Concretely, given an undirected complete graph \(G=(V,E)\) with a root \(r\in V\), an edge-weight function \(w:E\rightarrow R^{+}\) satisfying the triangle inequality, a vertex-weight function \(f:V{\setminus }\{r\}\rightarrow R^{+}_{0}\), and k construction teams having nonuniform construction speeds \(\lambda _{1}\), \(\lambda _{2}\), \(\ldots \), \(\lambda _{k}\), we are asked to find k trees for these k construction teams to cover all vertices in V, each tree starting at the same root r, i.e., k trees having a sole common vertex called root r, the objective is to minimize the maximum completion time, where the completion time of each team is the total construction weight of its related tree divided by its construction speed.

    In this paper, we first design a \(58.3286(1+\delta )\)-approximation algorithm to solve the HRTC problem in time \(O(n^{3}(1+\frac{1}{\delta })+\log (w(E)+f(V\backslash \{r\})))\) for any \(\delta >0\). In addition, we present a \(\max \{2\rho , 2+\rho -\frac{2}{k}\}\)-approximation algorithm for resolving the HRTC problem in time \(O(n^{2})\), where \(\rho \) is the ratio between the maximum and minimum speed of these k teams.

This paper is supported by the National Natural Science Foundation of China [Nos. 12361066, 12101593]. Junran Lichen is also supported by Fundamental Research Funds for the Central Universities [No.buctrc202219], and Jianping Li is also supported by Project of Yunling Scholars Training of Yunnan Province [No. K264202011820].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two travelling salesmen on a tree. Discret. Appl. Math. 68(1–2), 17–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts. Transp. Sci. 42(2), 127–145 (2008)

    Article  Google Scholar 

  3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem, Report 388. Carnegie Mellon University, Graduate School of Industrial Administration (1976)

    Google Scholar 

  4. Even, G., Garg, N., Koemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farbstein, B., Levin, A.: Min-max cover of a graph with a small number of parts. Discret. Optim. 16, 51–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  7. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77778-8

    Book  MATH  Google Scholar 

  8. Gørtz, I.L., Molinaro, M., Nagarajan, V., Ravi, R.: Capacitated vehicle routing with nonuniform speeds. Math. Oper. Res. 41(1), 318–331 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nagamochi, H., Okada, K.: Polynomial time 2-approximation algorithms for the minmax subtree cover problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 138–147. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_16

    Chapter  MATH  Google Scholar 

  10. Nagamochi, H.: Approximating the minmax rooted-subtree cover problem. IEICE Trans. Fundamentals Electron. Commun. Comput. Sci. E88-A(5), 1335–1338 (2005)

    Google Scholar 

  11. Schwartz, S.: An overview of graph covering and partitioning. Discret. Math. 345(8), 112884 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Toth, P., Vigo, D.: Vehicle Routing: Problems. Methods and Applications. MOS-SIAM, Philadelphia (2014)

    Google Scholar 

  13. Wu, W., Zhang, Z., Lee, W., Du, D.Z.: Optimal Coverage in Wireless Sensor Networks. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-52824-9

    Book  MATH  Google Scholar 

  14. Xu, Z., Wen, Q.: Approximation hardness of min-max tree covers. Oper. Res. Lett. 38(3), 169–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, W., Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover problems. IEEE Trans. Comput. 64(3), 600–613 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, W., Liu, Z.: Better approximability results for min-max tree/cycle/path cover problems. J. Comb. Optim. 37, 563–578 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, P., Lichen, J., Yang, P., Li, J. (2024). The Heterogeneous Rooted Tree Cover Problem. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14423. Springer, Cham. https://doi.org/10.1007/978-3-031-49193-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49193-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49192-4

  • Online ISBN: 978-3-031-49193-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics