Skip to main content

A Simple End-to-End Computer-Aided Detection Pipeline for Trained Deep Learning Models

  • Conference paper
  • First Online:
Engineering of Computer-Based Systems (ECBS 2023)

Abstract

Recently, there has been a significant rise in research and development focused on deep learning (DL) models within healthcare. This trend arises from the availability of extensive medical imaging data and notable advances in graphics processing unit (GPU) computational capabilities. Trained DL models show promise in supporting clinicians with tasks like image segmentation and classification. However, advancement of these models into clinical validation remains limited due to two key factors. Firstly, DL models are trained on off-premises environments by DL experts using Unix-like operating systems (OS). These systems rely on multiple libraries and third-party components, demanding complex installations. Secondly, the absence of a user-friendly graphical interface for model outputs complicates validation by clinicians. Here, we introduce a conceptual Computer-Aided Detection (CAD) pipeline designed to address these two issues and enable non-AI experts, such as clinicians, to use trained DL models offline in Windows OS. The pipeline divides tasks between DL experts and clinicians, where experts handle model development, training, inference mechanisms, Grayscale Softcopy Presentation State (GSPS) objects creation, and containerization for deployment. The clinicians execute a simple script to install necessary software and dependencies. Hence, they can use a universal image viewer to analyze results generated by the models. This paper illustrates the pipeline's effectiveness through a case study on pulmonary embolism detection, showcasing successful deployment on a local workstation by an in-house radiologist. By simplifying model deployment and making it accessible to non-AI experts, this CAD pipeline bridges the gap between technical development and practical application, promising broader healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019). https://doi.org/10.1038/s41591-018-0316-z

    Article  Google Scholar 

  2. UNSCEAR 2020/2021 Report Volume I. www.unscear.org/unscear/en/publications/2020_2021_1.html. Accessed 18 Sept 2023

  3. Dally, W.J., Keckler, S.W., Kirk, D.B.: Evolution of the graphics processing unit (GPU). IEEE Micro 41, 42–51 (2021). https://doi.org/10.1109/MM.2021.3113475

    Article  Google Scholar 

  4. Kahraman, A.T., Fröding, T., Toumpanakis, D., Gustafsson, C.J., Sjöblom, T.: Deep learning based segmentation for pulmonary embolism detection in real-world CT Angiography: classification performance (2023). https://doi.org/10.1101/2023.04.21.23288861v2. https://doi.org/10.1101/2023.04.21.23288861

  5. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  6. Nyarko, K., Taiwo, P., Duru, C., Masa-Ibi, E.: AI/ML systems engineering workbench framework. In: 2023 57th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2023). https://doi.org/10.1109/CISS56502.2023.10089781

  7. Newaz, A.I., Sikder, A.K., Rahman, M.A., Uluagac, A.S.: A survey on security and privacy issues in modern healthcare systems: attacks and defenses. ACM Trans. Comput. Healthcare 2, 27:1–27:44 (2021). https://doi.org/10.1145/3453176

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Teymur Kahraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kahraman, A.T., Fröding, T., Toumpanakis, D., Fridenfalk, M., Gustafsson, C.J., Sjöblom, T. (2024). A Simple End-to-End Computer-Aided Detection Pipeline for Trained Deep Learning Models. In: Kofroň, J., Margaria, T., Seceleanu, C. (eds) Engineering of Computer-Based Systems. ECBS 2023. Lecture Notes in Computer Science, vol 14390. Springer, Cham. https://doi.org/10.1007/978-3-031-49252-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49252-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49251-8

  • Online ISBN: 978-3-031-49252-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics