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Abstract. Federated learning (FL) is a machine learning setting where
clients keep the training data decentralised and collaboratively train a
model either under the coordination of a central server (centralised FL)
or in a peer-to-peer network (decentralised FL). Correct orchestration
is one of the main challenges. In this paper, we formally verify the cor-
rectness of two generic FL algorithms, a centralised and a decentralised
one, using the CSP process calculus and the PAT model checker. The
CSP models consist of CSP processes corresponding to generic FL al-
gorithm instances. PAT automatically proves the correctness of the two
generic FL algorithms by proving their deadlock freeness (safety prop-
erty) and successful termination (liveness property). The CSP models
are constructed bottom-up by hand as a faithful representation of the
real Python code and is automatically checked top-down by PAT.

Keywords: Decentralised intelligence · Federated learning · Python ·
Formal verification · CSP process calculus.

1 Introduction

Originally, federated learning (FL) was introduced by McMahan et al. [12] as a de-
centralised approach to model learning that leaves the training data distributed
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on the mobile devices and learns a shared model by aggregating locally computed
updates. Besides preserving local data privacy, FL is robust to the unbalanced
and non-independent and identically distributed (non-IID) data distributions,
and it reduces required communication rounds by 10–100x as compared to the
synchronized stochastic gradient descent algorithm. Inspired by [12], Bonawitz et
al. [4] introduced an efficient secure aggregation protocol for federated learning,
and Konecny et al. [9] presented algorithms for further decreasing communica-
tion costs. More recently, Bonawitz et al. [5] and Perino et al. [14] focused on
data privacy.

Nowadays, there are many FL frameworks. The most prominent TensorFlow
Federated (TFF) [20], [11] and BlueFog [22], [21] are well supported and accepted
and they work well in cloud-edge continuum. However, they are not deployable
to edge only, they are not supported on OS Windows, and they have numerous
dependencies that make their installation far from trivial.

Recently, in 2021, Kholod et al. [8] made a comparative review and analysis
of open-source FL frameworks for IoT, covering TensorFlow Federated (TFF)
from Google Inc [20], Federated AI Technology Enabler (FATE) from Webank’s
AI department [2], Paddle Federated Learning (PFL) from Baidu [3], PySyft
from the open community OpenMined [1], and Federated Learning and Differ-
ential Privacy (FL&DP) framework from Sherpa.AI [16]. They found out that
application of these frameworks in the IoTs environment is almost impossible.
So, developing a FL framework targeting smart IoTs in edge systems is still an
open challenge.

More recently, in 2023, Popovic et al. proposed their solution to that chal-
lenge called Python Testbed for Federated Learning Algorithms (PTB-FLA) [15].
PTB-FLA was developed with the primary intention to be used as a FL frame-
work for developing federated learning algorithms (FLAs), or more precisely as a
runtime environment for FLAs. The word “testbed” in the name PTB-FLA that
might be misleading was selected by ML & AI developers in TaRDIS project
[19] because they see PTB-FLA as an “algorithmic” testbed where they can plu-
gin and test their FLAs. Note that PTB-FLA is neither a system testbed, such
as the one that was used for testing the system based on PySyft in [17], nor
a complete system such as CoLearn [6] and FedIoT [23] (for more elaborated
comparison with CoLearn and FedIoT see Section I.A in [15]).

PTB-FLA is written in pure Python to keep the application footprint small
so to fit to IoTs, and to keep installation as simple as possible (with no external
dependencies). PTB-FLA supports both centralised and decentralised FLAs.
The former is as defined in [12], whereas the latter are generalized such that
each process (or node) alternatively takes server and client roles from [12] or
more precisely, it switches roles from server to client and back to server.

PTB-FLA enforces a restricted programming model, where a developer writes
a single application program, which is later instantiated and launched by the
PTB-FLA launcher as a set of independent processes, and within their applica-
tion program, a developer only writes callback functions for the client and the
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server roles, which are then called by the generic federated learning algorithms
hidden inside PTB-FLA.

So far, PTB-FLA usage has been illustrated and validated by three simple
examples in [15], but PTB-FLA has not been formally verified. In this paper, we
formally verify the correctness of two generic FL algorithms, a centralised and a
decentralised one, using the CSP process calculus and the PAT model checker,
in a process with two phases.

In the first phase, we construct by hand CSP models of the generic centralised
and decentralised FLAs as faithful representations of the real Python code. We
construct these models in a bottom-up fashion in two steps. In the first step, we
construct processes corresponding to generic FL algorithm instances, and in the
second step, we construct the system model as an asynchronous interleaving of
n FL algorithm instances.

In the second phase, we formally verify CSP models constructed in the pre-
vious phase in two steps. In the first step, we formulate desired system proper-
ties, namely deadlock freeness (safety property) and successful FLA termination
(liveness property). We formulate the latter property in two equivalent forms
(reachability statement and always-eventually LTL formula). In the second step,
we use PAT to automatically prove formulated verification statements.

The main contributions of this paper are: (i) the CSP models of the generic
centralised and decentralised FLAs, (ii) the formulations of generic centralised
and decentralised FLAs properties. To the best of our knowledge, this is the first
paper that formally verifies decentralised FLAs.

The rest of the paper is organized as follows. Section 1.1 presents closely
related work. Section 2 presents the PTB-FLA overview, Section 3 presents
PTB-FLA formalization, Section 4 presents PTB-FLA verification, and Section
5 concludes the paper.

1.1 Short Discussion of Closely Related Work

While tools for decentralised ML (DML), especially FL, are starting to flourish,
many are not flexible and portable enough to experiment with novel processors,
not fully connected network topologies, and asynchronous schemes. To overcome
these limitations, Mittone et al. use the formal language RISC-pb2l to describe
distributed FL workloads and to map them to the FastFlow parallel program-
ming library [13]. We consider this approach as orthogonal to our work because it
targets parallel and distributed processing composition and optimization whereas
our work targets formal verification of system correctness, i.e. proving desired
system properties.

Multiparty Asynchronous Session Types (MPST) is a class of behavioural
types tailored for describing distributed protocols relying on asynchronous com-
munications. Hu and Yoshida extended MPST in [7] with explicit connection
actions to support protocols with optional and dynamic participants. Although
these extended MPST enabled modelling and verification of some protocols in
cloud-edge continuum [18], we could not use them to model the generic cen-
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Fig. 1. Block diagram of the PTB-FLA system architecture.

tralised and decentralised FLAs, because we could not express arbitrary order
of message arrivals that take place at an FLA instance.

The design of robust protocols for coordination of peer-to-peer systems is
difficult because it is hard to specify and reason about their global behaviour.
Recently, Kuhn et al. presented an approach in [10] where a so-called swarm
protocol is a global system specification, whereas swarm protocol projections to
machines are local specifications of peers. They claim that swarms are dead-
lock free, but liveness is not guaranteed in their theory. We find this approach
interesting and in our future work we plan to investigate whether it would be
feasible for our generic FLAs. At present, we identify some of the differentiating
points between [10] and our work: (i) in their approach communication of peers
is conducted through a shared log instead of point-to-point message passing; (ii)
they model peers using finite state automata, while we use (CSP) processes; (iii)
they model protocols in the style of MPST via top-down approach (projecting
global type onto peers to obtain local type specification) while we only write lo-
cal processes specifications, that we ensemble together to obtain global protocol
behaviour; (iv) they use TypeScript language and develop tools to check protocol
conformance at runtime through equivalence testing, whereas our protocols are
written in Python language, modeled in CSP, and we use PAT to prove deadlock
freeness and liveness.

2 Generic Federated Learning Algorithms: PTB-FLA
Overview

This section presents the PTB-FLA overview. The term PTB-FLA system refers
to a system based on PTB-FLA. The next three subsections present the PTB-
FLA system architecture, the PTB-FLA API, and the PTB-FLA system oper-
ation, respectively.
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Fig. 2. UML class diagram of the PTB-FLA system architecture.

2.1 PTB-FLA System Architecture

The PTB-FLA system architecture is composed of the application launcher pro-
cess s, the distributed application A = {a1, a2, . . . , an}, and the distributed
testbed T = {t1, t2, . . . , tn}, see Fig. 1, where ai is an application program in-
stance, ti is a testbed instance, and n is the number of instances in both A
and T . The distributed application A uses the distributed testbed T to execute
the distributed algorithm, which is specified by the callback functions within the
application program. PTB-FLA supports both centralised and decentralised fed-
erated learning algorithms by providing the API functions that implement the
generic centralised algorithm and the generic decentralised algorithm, named
fl_centralised and fl_decentralised, respectively.

A particular distributed federated learning algorithm is executed as follows.
Each instance ai prepares its input data based on the command line arguments
(including the identification i, the number of instances n, etc.) and then calls
the desired generic API function on its testbed instance ti.

The testbed instance ti in turn plays its role in the generic algorithm by
exchanging messages with other testbed instances and by calling the associated
callback function at the right point of the generic algorithm. The communication
graph of testbed instances either takes the form of a star in case of a centralised
algorithm (see solid edges connecting the server t1 and the clients t2 to tn in Fig.
1), or the form of a clique in the case of a decentralised algorithm (see solid and
dashed edges connecting all the testbed instances in Fig. 1).

Fig. 2 shows the simplified UML class diagram of a PTB-FLA system. The
PTB-FLA system architecture comprises three layers: the distributed application
layer, the PTB-FLA layer (comprising the class PtbFla in the module ptbfla
and the module mpapi) in the middle, and the Python layer at the bottom. The
application module uses the PtbFla to create or destroy a testbed instance and
to conduct its role in the distributed algorithm execution by calling the API
function fl_centralised or the API function fl_decentralised.
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Fig. 3. The generic centralised one-shot FLA execution.

The API functions fl_centralised and fl_decentralised, within an instance ti,
use the module mpapi (mpapi is the abbreviation of the term message passing
API) to communicate with other instances. The module mpapi in turn instanti-
ates the Python multiprocessing classes Listener and Client to create the mpapi
server and the mpapi client, which are hidden with the module mpapi and pro-
vide reliable TCP connections among testbed instances.

2.2 PtbFla API

The PtbFla API offers the constructor, two generic FLAs, and the destructor:

– PtbFla(noNodes, nodeId, flSrvId = 0)
– ret fl_centralised(sfun, cfun, ldata, pdata, noIters = 1)
– ret fl_decentralised(sfun, cfun, ldata, pdata, noIters = 1)
– PtbFla()

The arguments are as follows: noNodes is the number of nodes (or processes),
nodeId is the node identification, flSrvId is the server id (default is 0; this
argument is used by the function fl_centralised), sfun is the server callback
function, cfun is the client callback function, ldata is the initial local data, pdata
is the private data, and noIters is the number of iterations that is by default
equal to 1 (for the so called one-shot algorithms), i.e. if the calling function does
not specify it, it will be internally set to 1. The return value ret is the node final
local data. Data (ldata and pdata) is application specific.

Typically, ldata is a machine learning model, whereas pdata is a training data
that is used to train the model. Normally, the testbed instances only exchange
ldata and they never send out pdata (that is how they guarantee the training
data privacy). The pdata is only passed to callback functions within the same
process instance to immediately set them in their working context.
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2.3 PTB-FLA Operation

This subsection provides an overview of the PTB-FLA operation by presenting
the two most important scenarios: the generic centralised and decentralised one-
shot FLA executions, respectively.

The generic centralised one-shot FLA has three phases, see Fig. 3 (here a1
is the server and ai, i = 2, . . . , n, are the clients). In the first phase, the server
broadcasts its local data to the clients, which in their turn call their callback
function to get the update data and store the update data locally. In the second
phase, the server receives the update data from all the clients (in any order,
caused by arbitrary delays), and in the third phase, the server calls its callback
function to get its update data (i.e. aggregated data) and stores it locally. Finally,
all the instances return their new local data as their results.

Unlike the generic centralised FLA that uses the single field messages carrying
data, the generic decentralised FLA uses the three field messages carrying: the
messages sequence number (i.e. the phase number), the message source address
(i.e. the source instance network address), and the data (local or update).

The generic decentralised one-shot FLA has three phases, see Fig. 4. In the
first phase, each instance acts as a server, and it sends its local data to all its
neighbours. These messages have the sequence number 1, each instance sends
(n− 1) such messages and is also the destination for (n− 1) such messages.

Fig. 4. The generic decentralised one-shot FLA execution.

In the second phase, each instance acts as a client, and it may receive either
a message with the sequence numbers 1 or 2. In the latter case, it just stores it
in a buffer for later processing in the third phase, whereas in the former case, it
calls the client callback and sends the update data in the reply to the message
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source. Note that during the second phase, the instance does not update its local
data, it just passes the update data it got from the client callback function.

Since messages are sent asynchronously, they may be received in any order.
Fig. 4 shows a scenario where the instance a1 receives the messages in the mes-
sages sequence 1−2−1−2, which is out of the phase order, whereas the instances
ai and an receive the messages in the sequence 1 − 1 − 2 − 2, which is in the
phase order. However, by using the abovementioned buffering, the instance a1
postpones processing of the phase 2 messages until the third phase.

The second phase is completed after the instance received and processed all
2(n− 1) message. In the third phase, each instance again acts as a server, and it
calls the server callback function to get its update data (e.g., aggregated data)
and stores it locally. Finally, all the instances return their new local data as their
results.

3 CSP Formal Models

In this section we use CSP process calculus to obtain a formal specification of
the communication layer of our PTB-FLAs. The CSP provides modeling of the
concurrency primitives as follows:

– the system components are CSP processes;
– communication between the system components is performed through the

communication channels;
– the system of parallel processes communicating asynchronously (i.e. without

barrier synchronization) is assembled via interleaving of the CSP processes.

The rest of the section is organized as follows: Section 3.1 presents the model
for our centralised algorithm and Section 3.2 presents the model for the decen-
tralised algorithm.

3.1 Modeling centralised algorithm

Figure 5 shows a CSP model for our centralised algorithm. Lines 2-3 define
number of nodes (NoNodes) (indexed with 0, 1, 2, . . .) with the server (FlSrvId)
having the largest index, and other nodes being clients. We remark we could set
here the index of the server node with the smallest index (as it is in Section 2.3),
but this would in fact make our model less intuitive because of the channel
manipulation (as explained bellow). Lines 4-5 define arrays of local data ldata
and private data pdata - one per each node. The communication channels are
defined in lines 8-9. The array of channels server2client - one per each client
(hence, NoNodes−1 channels) are used for the server broadcast of their local data
to the clients (one channel per client). Notice that the indexes of array elements
are generated starting with 0, hence the channel index indicates the index of the
client node. Since we consider one-shot algorithm the server sends their local
data only once, hence the channels are specified to have FIFO buffers of size
1. Channel clients2server is used in the second phase of our algorithm, i.e.
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1 // PTB -FLA
2 enum {False , True};
3 #define NoNodes 3;
4 #define FlSrvId 2;
5 var ldataArr[NoNodes ];
6 var pdataArr[NoNodes ];
7 var terminated;
8 channel server2client[NoNodes -1] 1;
9 channel clients2server NoNodes -1;

10
11 FlCentralised(noNodes , nodeId , flSrvId , ldata , pdata) =
12 if(nodeId == FlSrvId) {
13 CeServer(noNodes , nodeId , flSrvId , ldata , pdata)
14 } else {
15 CeClient(noNodes , nodeId , flSrvId , ldata , pdata)
16 };
17
18 CeServer(noNodes , nodeId , flSrvId , ldata , pdata) =
19 {terminated = False} ->
20 CeBroadcastMsg (0, noNodes , nodeId , ldata );
21 CeRcvMsgs(0, noNodes -1);
22 {terminated = True} -> Skip;
23
24 CeBroadcastMsg(id , noNodes , nodeId , ldata) =
25 if(id != nodeId) {
26 server2client[id]!ldata -> Skip
27 };
28 if(id < noNodes -1) {
29 CeBroadcastMsg(id+1, noNodes , nodeId , ldata)
30 };
31
32 CeRcvMsgs(i, noMsgs) =
33 if(i < noMsgs) {
34 clients2server?update -> CeRcvMsgs(i+1, noMsgs)
35 };
36
37 CeClient(noNodes , nodeId , flSrvId , ldata , pdata) =
38 server2client[nodeId ]? srvLdata ->
39 clients2server!ldata+srvLdata ->
40 Skip;
41
42 SysCentralised () =
43 ||| nodeId :{0.. NoNodes -1}
44 @FlCentralised(NoNodes ,
45 nodeId ,
46 FlSrvId ,
47 ldataArr[nodeId],
48 pdataArr[nodeId ]);

Fig. 5. CSP model for centralised algorithm.
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for clients replying to the server with the update data. The FIFO size of this
channel is NoNodes−1, since all clients reply with a single update.

Lines 11-16 define a generic node as a CSP process with parameters of the
number of nodes, identification of the node, index of the server, their local and
private data. We remark that parameters sfun, cfun, and noIters, also present
in fl_centralised (cf. Section 2.2), were considered out of the scope for this model.
Based on the node index the process proceeds as the server node CeServer or
as one of the client nodes CeClient.

The server node is modeled in lines 18-22. The process first checks if it is ter-
minated: if not it performs the broadcasting of the local data via CeBroadcastMsg
(i.e. it enters the phase 1, cf. Figure 3), then proceeds to phase 2 by receiving
updates via CeRcvMsgs. The successful termination is modeled with Skip. The
broadcasting of server’s local data CeBroadcastMsg is defined in lines 24-30.
The server sends ldata on channels server2clients[id] (if id is not their own
index), and then recursively calls itself with index increased by 1 - if the index is
less then noNodes−1. Since CeServer passes id to CeBroadcastMsg to be 0, the
server will send the local data to all the clients exactly once. Once the broadcast
is done, the server starts receiving clients’ updates on channel clients2server
as defined with CeRcvMsgs in lines 32-35.

The client process is defined with CeClient in lines 37-40. The client with in-
dex nodeId first receives server’s local data on channel server2client[nodeId],
and then replies updated server’s local data with its own local data (here for sim-
plicity modeled with addition) on channel clients2server, after which client
process successfully terminates.

The system consisting of NoNodes−1 clients and a single server is then mod-
eled as the interleaving of the FlCentralised processes (lines 42-48), since all
processes but one indexed FlSrvId are instantiated as clients (and the one in-
dexed FlSrvId is instantiated as a server).

3.2 Modeling decentralised algorithm

The CSP model for our decentralised algorithm is given in Figure 6. Albeit
more complex than the centralised one, the decentralised algorithm yields a
slightly simpler CSP model. The reason is that all nodes in the system have the
same behaviour. In phase 1 all nodes behave as servers broadcasting their local
data to all other nodes, which in turn update the data and return an answer
in phase 2 (corresponding to phases given in Figure 4 in Section 2.3). All the
nodes receive messages from all other nodes as they arrive, but first process the
messages from phase 1 and only then deals with the messages from the phase 2.
We model this behaviour with assigning two channels to each process (i.e. node).
One channel is for receiving messages from other processes, called tonode, with
buffer of size 2*(NoNodes-1) (line 7), since the node will receive messages from
all other nodes from both phases. The other channel assigned to node, called
buffer (line 8), serves only for storing messages from the second phase while all
messages from the first phase are processed - later in phase 3 the same node will
read those messages. Hence, the buffer size of these channels are NoNodes-1.
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1 // PTB -FLA
2 enum {False , True};
3 #define NoNodes 3;
4 var ldataArr[NoNodes ];
5 var pdataArr[NoNodes ];
6 var terminated;
7 channel tonode[NoNodes] 2*( NoNodes -1);
8 channel buffer[NoNodes] NoNodes -1;
9

10 FlDecentralised(noNodes , nodeId , ldata , pdata) =
11 {terminated = False} ->
12 DeBroadcastMsg (0, noNodes , nodeId , ldata );
13 DeRcvMsgs(0, noNodes , nodeId , ldata );
14 DeRcvMsgs2 (0, noNodes , nodeId );
15 {terminated = True} -> Skip;
16
17 DeBroadcastMsg(id , noNodes , nodeId , ldata) =
18 if(id != nodeId) {
19 tonode[id]!1. nodeId.ldata -> Skip
20 };
21 if(id < noNodes -1) {
22 DeBroadcastMsg(id+1, noNodes , nodeId , ldata)
23 };
24
25 DeRcvMsgs(i, noNodes , nodeId , ldata) =
26 if(i < 2*noNodes -2) {
27 tonode[nodeId ]? phase.from.nodeldata ->
28 if(phase == 1){
29 tonode[from ]!2. nodeId.ldata+nodeldata ->
30 DeRcvMsgs(i+1, noNodes , nodeId , ldata)
31 } else {
32 buffer[nodeId ]! phase.from.nodeldata ->
33 DeRcvMsgs(i+1, noNodes , nodeId , ldata)
34 }
35 };
36
37 DeRcvMsgs2(i, noNodes , nodeId) =
38 if(i < noNodes -1) {
39 buffer[nodeId ]? phase.from.update ->
40 DeRcvMsgs2(i+1, noNodes -1, nodeId)
41 };
42
43 SysDecentralised () =
44 ||| nodeId :{0.. NoNodes -1}
45 @FlDecentralised(NoNodes ,
46 nodeId ,
47 ldataArr[nodeId],
48 pdataArr[nodeId ]);

Fig. 6. CSP model for decentralised algorithm.
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1 // ...
2 // CSP model for centralised algorithm
3 // ...
4
5 #assert SysCentralised () deadlockfree;
6 #define Terminated (terminated == True);
7 #assert SysCentralised () reaches Terminated;
8 #assert SysCentralised () |= []<> Terminated;

Fig. 7. Verifying centralised algorithm.

The node processes are defined with FlDecentralised in lines 10-15. Process
first broadcasts their local data with DeBroadcastMsg (defined in lines 17-23) -
which behaves in the same way as CeBroadcastMsg in the centralised algorithm
(cf. Figure 5), except that the sent messages now contain not only field for local
data of the node, but also fields marking the phase (here 1) and the node’s index
(that the receiving node uses for the reply in phase 2). The node then proceeds
with receiving messages from all other nodes with DeRcvMsgs, and finally (phase
3) process the messages from the second phase with DeRcvMsgs2.

DeRcvMsgs is given in lines 25-35. Here we deviate from the centralised al-
gorithm: node receives all messages from both phases from the other nodes and
then performs an analysis on the phase of the received message. If the phase
is 1, the node replies updated data to from they received message in the first
place, marking the phase of the message 2. If, on the other hand, the phase is
2, the node stores the message to their own channel buffer[nodeId]. Once the
node process all messages from phase 1 (and buffers all messages from phase
2), DeRcvMsgs2 (lines 37-41) is used to read from the buffer[nodeId], which
behaves in the same way as CeRvcMsgs from the centralised algorithm (cf. Fig-
ure 5).

The system of NoNodes nodes is finally modeled as the interleaving of the
FlDecentralised processes in lines 43-48.

4 Formal Verification in PAT

The correctness of our CSP models is automatically checked by PAT, that sup-
ports the system analysis in two ways: simulation and model checker. We have
used the latter one.

The correctness of our centralised and decetralised algorithms is verified by
proving the deadlock freeness (safety property) and successful termination (live-
ness property). The properties about algorithms are stated in the form of queries,
called assertions, which are checked by PAT. The assertions that formally verify
the correctness of our centralised algorithm are shown in Figure 7.

The assertion given in line 5 of Figure 7 claims that the centralised algorithm
is deadlock free. PAT model checker performs Depth-First-Search or Breath-
First-Search algorithm to check if the assertion is true. It explores unvisited
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1 // ...
2 // CSP model for decentralised algorithm
3 // ...
4
5 #assert SysDecentralised () deadlockfree;
6 #define Terminated (terminated == True);
7 #assert SysDecentralised () reaches Terminated;
8 #assert SysDecentralised () |= []<> Terminated;

Fig. 8. Verifying decentralised algorithm.

states until a non-terminated state with no further move—called a deadlock
state, is found or all states have been visited.

The assertion given in line 7 of Figure 7 claims that the centralised algorithm
reaches a terminated state. This assertion is checked by performing Depth-First-
Search algorithm. PAT model checker repeatedly explores all unvisited states
until it finds a state at which the condition Terminated is satisfied or it visits
all the states. The condition Terminated is a proposition defined as a global
definition (line 6 in Figure 7).

PAT supports the full syntax of the linear temporal logic (LCL), which is used
in the last assertion of Figure 7 that claims our centralised algorithm satisfies
formula []<> Terminated. The modal operator [] reads as ”always” and the
operator <> reads as ”eventually”, so statement asserts our centralised algorithm
always eventually reaches the terminated state.

The proof of correctness of our decentralised algorithm is given in Figure 8,
and follows the same explanations given for the centralised one.

5 Conclusion

In this paper, we formally verified the correctness of two generic FL algorithms,
a centralised and a decentralised one, using the CSP process calculus and the
PAT model checker. The CSP models are constructed bottom-up by hand as a
faithful representation of the real Python code and their correctness (safety and
liveness) are automatically checked top-down by PAT.

The main contributions of this paper are:

– the CSP models of the generic centralised and decentralised FLAs,
– the formulations of generic centralised and decentralised FLAs properties.

To the best of our knowledge, this is the first paper that formally verifies
decentralised FLAs.

The main limitations of this paper are:

– we implicitly assumed that callback functions are terminating (i.e., have
termination property),
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– we did not model any ML&AI processing within the callback functions and
therefore were unable to address the properties of the corresponding in-
formation flows and output results, such as privacy of information flows,
understandability/interpretability of the resulting models, etc.

In our future work, we may try to address some of the latter limitations
mentioned above.
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