Skip to main content

Ambient Temperature Prediction for Embedded Systems Using Machine Learning

  • Conference paper
  • First Online:
Engineering of Computer-Based Systems (ECBS 2023)

Abstract

In this work, we use two well-established machine learning algorithms i.e., Random Forest (RF) and XGBoost, to predict ambient temperature for a baseband’s board. After providing an overview of the related work, we describe how we train the two ML models and identify the optimal training and test datasets to avoid the problems of data under- and over-fitting. Given this train/test split, the trained RF and XGBoost models provide temperature predictions with an accuracy lower than one degree Celsius, i.e., far better than any other approach that we used in the past. Our feature importance assessments reveal that the temperature sensors contribute significantly more towards predicting the ambient temperature compared to the power and voltage readings. Furthermore, the RF model appears less volatile than XGBoost using our training data. As the results demonstrate, our predictive temperature models allow for an accurate error prediction as a function of baseband board sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    sklearn.model_selection.train_test_split,

    https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html).

References

  1. 3GPP: TS 22 261–v19.1.0 - 3rd generation partnership project; technical specification group services and system aspects; service requirements for the 5G system; stage 1 (release 19) (2022)

    Google Scholar 

  2. Al-Dulaimi, A., Wang, X., Chih-Lin, I.: 5G networks: Fundamental requirements, enabling technologies, and operations management (2018). https://doi.org/10.1002/9781119333142

  3. Bates, S., Hastie, T., Tibshirani, R.: Cross-validation: what does it estimate and how well does it do it? (2022). https://doi.org/10.48550/arXiv.2104.00673

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Camps-Mur, D., et al.: AI and ML - enablers for beyond 5G networks (2021). https://doi.org/10.5281/zenodo.4299895

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  7. Cheng, T., Du, H., Li, L., Fu, Y.: LSTM-based temperature prediction and hotspot tracking for thermal-aware 3D NoC system. In: 2021 18th International SoC Design Conference (ISOCC), pp. 286–287 (2021)

    Google Scholar 

  8. Chigurupati, A., Thibaux, R., Lassar, N.: Predicting hardware failure using machine learning. In: 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6 (2016). https://doi.org/10.1109/RAMS.2016.7448033

  9. Chih-Lin, I., Kukliński, S., Chen, T., Ladid, L.L.: A perspective of O-RAN integration with MEC, SON, and network slicing in the 5G era. IEEE Netw. 34, 3–4 (2020). https://doi.org/10.1109/MNET.2020.9277891

  10. Cotta, J., Breque, M., Nul, L.D., Petridis, A.: Industry 5.0 towards a sustainable, human-centric and resilient European industry. European Commission Research and Innovation (R &I) Series Policy Brief (2021). https://doi.org/10.2777/308407,https://ec.europa.eu/eurostat/statistics-

  11. Das, A., Mueller, F., Rountree, B.: Aarohi: making real-time node failure prediction feasible. In: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1092–1101 (2020). https://doi.org/10.1109/IPDPS47924.2020.00115

  12. Das, M.K., Rangarajan, K.: Performance monitoring and failure prediction of industrial equipments using artificial intelligence and machine learning methods: a survey. In: Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, pp. 595–602 (2020). https://doi.org/10.1109/ICCMC48092.2020.ICCMC-0000111

  13. Durgam, S., Bhosale, A., Bhosale, V., Deshpande, R., Sutar, P., Kamble, S.: Ensemble learning for predicting temperature of heat sources for minimizing electronic failures (2021). https://doi.org/10.1109/ICNTE51185.2021.9487663

  14. Escudero-Mancebo, D., Fernández-Villalobos, N., Óscar Martín-Llorente, Martínez-Monés, A.: Research methods in engineering design: a synthesis of recent studies using a systematic literature review. Res. Eng. Design 34, 221–256 (2023). https://doi.org/10.1007/s00163-022-00406-y

  15. Ilager, S., Ramamohanarao, K., Buyya, R.: Thermal prediction for efficient energy management of clouds using machine learning. IEEE Trans. Parallel Distrib. Syst. 32(5), 1044–1056 (2021). https://doi.org/10.1109/TPDS.2020.3040800

  16. Lyu, N., Jin, Y., Xiong, R., Miao, S., Gao, J.: Real-time overcharge warning and early thermal runaway prediction of li-ion battery by online impedance measurement. IEEE Trans. Industr. Electron. (2021). https://doi.org/10.1109/TIE.2021.3062267

    Article  Google Scholar 

  17. Nisce, I., Jiang, X., Vishnu, S.P.: Machine learning based thermal prediction for energy-efficient cloud computing (2023). https://doi.org/10.1109/ccnc51644.2023.10060079

  18. O’connor, P.D.: Arrhenius and electronics reliability. Qual. Reliab. Eng. Int. 5, 255 (1989). https://doi.org/10.1002/qre.4680050402

  19. Ozceylan, B., Haverkort, B.R., Graaf, M.D., Gerards, M.E.: Improving temperature prediction accuracy using Kalman and particle filtering methods (2020). https://doi.org/10.1109/THERMINIC49743.2020.9420535

  20. Peng, Y.H., Lee, C.M., Tung, K.Y., Chen, R.: Rack inlet temperature prediction based on deep learning (2022). https://doi.org/10.1109/ICMT56556.2022.9997747

  21. Phuyal, S., Bista, D., Bista, R.: Challenges, opportunities and future directions of smart manufacturing: a state of art review. Sustain. Futures 2, 100023 (2020). https://doi.org/10.1016/J.SFTR.2020.100023

  22. Prisacaru, A., Gromala, P.J., Han, B., Zhang, G.Q.: Degradation estimation and prediction of electronic packages using data-driven approach. IEEE Trans. Ind. Electron. 69(3), 2996–3006 (2022). https://doi.org/10.1109/TIE.2021.3068681

  23. Spory, E.M.: Increased high-temperature IC packaging reliability using die extraction and additive manufacturing assembly (2016). https://doi.org/10.4071/2016-hitec-18

  24. Vitucci, C., Sundmark, D., Jägemar, M., Danielsson, J., Larsson, A., Nolte, T.: Fault management framework and multi-layer recovery methodology for resilient system. In: Proceeding IEEE 6th International Conference on System Reliability and Safety (ICSRS), pp. 32–39 (2022)

    Google Scholar 

  25. Wang, N., Li, J.Y.: Efficient multi-channel thermal monitoring and temperature prediction based on improved linear regression. IEEE Trans. Instrum. Measur. 71, 1–9 (2022). https://doi.org/10.1109/TIM.2021.3139659

  26. Wang, N., et al.: An enhanced thermoelectric collaborative cooling system with thermoelectric generator serving as a supplementary power source. IEEE Trans. Electron Devices 68(4), 1847–1854 (2021). https://doi.org/10.1109/TED.2021.3059183

  27. Yang, X., Sang, Q., Wang, C., Yu, M., Zhao, Y.: Development and challenges of reliability modeling from transistors to circuits. IEEE J. Electron Devices Soc. (2023). https://doi.org/10.1109/JEDS.2023.3253081

    Article  Google Scholar 

  28. Yao, X., Omori, M., Nishi, H.: Load balancing method using server temperature prediction considering multiple internal heat sources in data centers (2021). https://doi.org/10.1109/ICM46511.2021.9385604

  29. Zhang, K., Ogrenci-Memik, S., Memik, G., Yoshii, K., Sankaran, R., Beckman, P.: Minimizing thermal variation across system components (2015). https://doi.org/10.1109/IPDPS.2015.37

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Vitucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, S., Olausson, M., Vitucci, C., Avgouleas, I. (2024). Ambient Temperature Prediction for Embedded Systems Using Machine Learning. In: Kofroň, J., Margaria, T., Seceleanu, C. (eds) Engineering of Computer-Based Systems. ECBS 2023. Lecture Notes in Computer Science, vol 14390. Springer, Cham. https://doi.org/10.1007/978-3-031-49252-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49252-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49251-8

  • Online ISBN: 978-3-031-49252-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics