Skip to main content

A Public-Key System Based on Primes and Addition

  • Conference paper
  • First Online:
Telecommunications and Remote Sensing (ICTRS 2023)

Abstract

In this paper, we describe a public-key algorithm that uses random primes to construct a matrix that is made public. To encrypt an integer, say P, representing a given plaintext message, the integer P is used to select a unique set of integers S from this constructed matrix. To encrypt the message, the integers in the set S are added, and the resulting sum represents the encrypted message. To decrypt the message, three secret keys are used in a mathematical algorithm to determine the original message P from the sum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The sum of the elements in any row m of the rotated Pascal Triangle is the value of the element at position \([m+1,1]\) which is \(\left( {\begin{array}{c}2m-1\\ m-1\end{array}}\right) \), easily deduced by considering the entries in a Pascal Triangle.

References

  1. Rubinstein-Salzedo, S.: Cryptography, Palo Alto, CA, USA. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94818-8

  2. Cooper, R.H., Hunter-Duvar, R., Patterson, W.: A more efficient public-key cryptosystem using the pascal triangle. In: IEEE International Conference on Communications, World Prosperity Through Communications, Boston, MA, USA, vol. 3, pp. 1165–1169. IEEE (1989). https://doi.org/10.1109/ICC.1989.49866

  3. Saias, E.: Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32(1), 78–99 (1989). https://doi.org/10.1016/0022-314X(89)90099-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Sorenson, J.P.: A fast algorithm for approximately counting smooth numbers. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 539–549. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_36

    Chapter  Google Scholar 

  5. Granville, A.: Smooth numbers: computational number theory and beyond. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, New York, NY, USA, pp. 267–323. Cambridge University Press (2008). https://www.cambridge.org/9780521808545

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney H. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cooper, R.H., Retallick, J., Petersen, B.R. (2023). A Public-Key System Based on Primes and Addition. In: Shishkov, B., Lazarov, A. (eds) Telecommunications and Remote Sensing. ICTRS 2023. Communications in Computer and Information Science, vol 1990. Springer, Cham. https://doi.org/10.1007/978-3-031-49263-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49263-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49262-4

  • Online ISBN: 978-3-031-49263-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics