Skip to main content

Comparing Machine Learning Algorithms for Medical Time-Series Data

  • Conference paper
  • First Online:
Product-Focused Software Process Improvement (PROFES 2023)

Abstract

Medical software becomes increasingly advanced and more mission-critical. Machine learning is one of the methods which is used in medical software to tackle a diversity of patient data, problems with data quality and providing the ability to process increasingly large amounts of data from medical procedures. However, one of the challenges is the lack of comparisons of algorithms in-situ, during medical procedures. This paper explores the potential of performing real-time comparisons of algorithms for early stroke detection during carotid endarterectomy. SimSAX, DTW (dynamic time warping), and Pearson correlation were compared based on the real-time data against medical specialists in clinical evaluations. The analysis confirmed the general feasibility of the approach, though the algorithms were inadequate in extracting significant information from specific signals. Interviews with physicians revealed a positive outlook toward the system’s potential, advocating for further investigation. Despite their limitations, the algorithms and the prototype application provides a promising foundation for future development of new methods for detecting stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

    Chapter  Google Scholar 

  2. Wenneberg, S.B., et al.: Heart rate variability monitoring for the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Acta Anaesthesiol. Scand. 64(7), 945–952 (2020)

    Article  Google Scholar 

  3. Block, L., El-Merhi, A., Liljencrantz, J., Naredi, S., Staron, M., Hergès, H.O.: Cerebral ischemia detection using artificial intelligence (CIDAI)-a study protocol. Acta Anaesthesiol. Scand. 64(9), 1335–1342 (2020)

    Article  Google Scholar 

  4. Tak chung Fu: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  5. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  6. Fagius, J., ten-Magnus Aquilonius, S.: Chapter 9 Cerebrovaskulära sjukdomar. Stockholm Liber (2006)

    Google Scholar 

  7. Feigin, V.L., et al.: World stroke organization (WSO): global stroke fact sheet 2022. Int. J. Stroke 17(1), 18–29 (2022)

    Article  Google Scholar 

  8. Foreman, B., Claassen, J.: Quantitative EEG for the detection of brain ischemia. Crit. Care 16(2), 1–9 (2012)

    Article  Google Scholar 

  9. Martini, F., Nath, J.L.: The Brain and Cranial Nerves. Stockholm Liber (2006)

    Google Scholar 

  10. Megjhani, M., et al.: Dynamic detection of delayed cerebral ischemia. Stroke 52(4), 1370–1379 (2021)

    Article  Google Scholar 

  11. Moerman, A., Wouters, P.: Near-infrared spectroscopy (NIRS) monitoring in contemporary anesthesia and critical care. Acta Anaesthesiol. Belgica 61, 185–94 (2010)

    Google Scholar 

  12. Ochodek, M., Staron, M., Meding, W.: SimSAX: a measure of project similarity based on symbolic approximation method and software defect inflow. Inf. Softw. Technol. 115, 131–147 (2019)

    Article  Google Scholar 

  13. Hergès, H.O., Vithal, R., El-Merhi, A., Naredi, S., Staron, M., Block, L.: Machine learning analysis of heart rate variability to detect delayed cerebral ischemia in subarachnoid hemorrhage. Acta Neurol. Scand. 145(2), 151–159 (2022)

    Article  Google Scholar 

  14. Song, K., Ryu, M., Lee, K.: Transitional sax representation for knowledge discovery for time series. Appl. Sci. 10(19), 6980 (2020)

    Article  Google Scholar 

  15. Tavenard, R.: An introduction to dynamic time warping (2021). https://rtavenar.github.io/blog/dtw.html

  16. Tormene, P., Giorgino, T., Quaglini, S., Stefanelli, M.: Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif. Intell. Med. 45(1), 11–34 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Helmersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Helmersson, A. et al. (2024). Comparing Machine Learning Algorithms for Medical Time-Series Data. In: Kadgien, R., Jedlitschka, A., Janes, A., Lenarduzzi, V., Li, X. (eds) Product-Focused Software Process Improvement. PROFES 2023. Lecture Notes in Computer Science, vol 14483. Springer, Cham. https://doi.org/10.1007/978-3-031-49266-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49266-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49265-5

  • Online ISBN: 978-3-031-49266-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics