Skip to main content

Integration of Classical and Quantum Services Using an Enterprise Service Bus

  • Conference paper
  • First Online:
Product-Focused Software Process Improvement (PROFES 2023)

Abstract

Early advancements in quantum computing have opened up new possibilities to tackle complex problems across various fields, including mathematics, physics, and healthcare. However, the technology required to construct systems where different quantum and classical software components collaborate is currently lacking. To address this, substantial progress in service-oriented quantum computing is necessary, empowering developers to create and operate quantum services and microservices that are comparable to their classical counterparts. The main objective of this work is to establish the essential technological infrastructure for integrating an Enterprise Service Bus (ESB). This integration enables developers to implement quantum algorithms through independent and automatable services, thereby facilitating the collaboration of quantum and classical software components. Additionally, this work has been validated through a practical case using Zato, a platform that supports service-oriented architectures. By achieving this goal, developers can harness the power of quantum computing while benefiting from the flexibility, scalability, and efficiency of service-oriented computing. This integration opens up new possibilities for developing advanced quantum applications and tackling real-world challenges across various domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://qiskit.org/.

  2. 2.

    https://github.com/aws/amazon-braket-sdk-python.

  3. 3.

    https://quantumai.google/cirq.

  4. 4.

    https://zato.io/.

  5. 5.

    https://github.com/aws-samples/amazon-braket-algorithm-library/blob/main/src/braket/experimental/algorithms/quantum_approximate_optimization/quantum_approximate_optimization.py.

  6. 6.

    https://github.com/javibc3/qaoa-zato-services.

References

  1. Ahmad, A., Altamimi, A.B., Aqib, J.: A reference architecture for quantum computing as a service (2023)

    Google Scholar 

  2. Beisel, M., Barzen, J., Leymann, F., Truger, F., Weder, B., Yussupov, V.: Configurable readout error mitigation in quantum workflows. Electronics 11(19) (2022). https://doi.org/10.3390/electronics11192983

  3. Cao, Y., et al.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019). https://doi.org/10.1021/ACS.CHEMREV.8B00803

    Article  Google Scholar 

  4. Commander, C.: Maximum cut problem, MAX-CUT . In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization. Springer, Boston, MA, pp. 1991–1999 (2008). https://doi.org/10.1007/978-0-387-74759-0_358

  5. De Stefano, M., Di Nucci, D., Palomba, F., Taibi, D., De Lucia, A.: Towards quantum-algorithms-as-a-service. In: Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering, QP4SE 2022, pp. 7–10. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3549036.3562056

  6. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018). https://doi.org/10.1088/1361-6633/AAB406

    Article  MathSciNet  Google Scholar 

  7. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv arXiv1411.4028 (2014)

  8. Forcer, T.M., Hey, A.J., Ross, D., Smith, P.: Superposition, entanglement and quantum computation. Quantum Inf. Comput. 2(2), 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., Murillo, J.M.: Quantum software as a service through a quantum API gateway. IEEE Internet Comput. 26(1), 34–41 (2022). https://doi.org/10.1109/MIC.2021.3132688

    Article  Google Scholar 

  10. Hoffman, K.L., Padberg, M.: Traveling salesman problem (TSP) traveling salesman problem, pp. 849–853. Springer, US, New York, NY (2001). https://doi.org/10.1007/1-4020-0611-X_1068

  11. Korte, B., Vygen, J.: The knapsack problem. In: Combinatorial Optimization. Algorithms and Combinatorics, vol. 21, pp. 397–406. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-21711-5_17

  12. Moguel, E., Rojo, J., Valencia, D., Berrocal, J., Garcia-Alonso, J., Murillo, J.M.: Quantum service-oriented computing: current landscape and challenges. Software Qual. J. 30, 983–1002 (2022). https://doi.org/10.1007/S11219-022-09589-Y

    Article  Google Scholar 

  13. Mohan, B., Das, S., Pati, A.K., Gholizadeh, A., Hadipour, M., Haseli, S.: Quantum speed limits: from heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017). https://doi.org/10.1088/1751-8121/AA86C6

    Article  MathSciNet  Google Scholar 

  14. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822

    Article  Google Scholar 

  15. Pérez-Castillo, R., Piattini, M.: Design of classical-quantum systems with UML. Computing 104(11), 2375–2403 (2022). https://doi.org/10.1007/s00607-022-01091-4

    Article  Google Scholar 

  16. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1) (2014). https://doi.org/10.1038/ncomms5213

  17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/s0097539795293172

    Article  MathSciNet  MATH  Google Scholar 

  18. Sych, D., Leuchs, G.: A complete basis of generalized bell states. New J. Phys. 11(1), 013006 (2009). https://doi.org/10.1088/1367-2630/11/1/013006

    Article  Google Scholar 

  19. Vietz, D., Barzen, J., Leymann, F., Weder, B.: Splitting quantum-classical scripts for the generation of quantum workflows. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) Enterprise Design, Operations, and Computing. EDOC 2022. LNCS, vol. 13585, pp 255–270. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_15

  20. Weder, B., Breitenbücher, U., Leymann, F., Wild, K.: Integrating quantum computing into workflow modeling and execution. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), pp. 279–291 (2020). https://doi.org/10.1109/UCC48980.2020.00046

  21. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10(2) (2020). https://doi.org/10.1103/physrevx.10.021067

Download references

Acknowledgment

This work has been partially funded by MCIN/AEI/10.13039/501100011033 and by the EU “Next GenerationEU/PRTR”, by the Ministry of Science, Innovation and Universities (projects PID2021-1240454OB-C31, TED2021-130913B-I00, PDC2022-133465-I00). It is also supported by the QSALUD project (EXP 00135977/MIG-20201059) in the lines of action of the CDTI; by the Ministry of Economic Affairs and Digital Transformation of the Spanish Government through the Quantum ENIA project - Quantum Spain project; by the EU through the Recovery, Transformation, and Resilience Plan - NextGenerationEU within the framework of the Digital Spain 2025 Agenda; and by the Regional Ministry of Economy, Science and Digital Agenda (GR21133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Bonilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonilla, J., Moguel, E., García-Alonso, J., Canal, C. (2024). Integration of Classical and Quantum Services Using an Enterprise Service Bus. In: Kadgien, R., Jedlitschka, A., Janes, A., Lenarduzzi, V., Li, X. (eds) Product-Focused Software Process Improvement. PROFES 2023. Lecture Notes in Computer Science, vol 14484. Springer, Cham. https://doi.org/10.1007/978-3-031-49269-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49269-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49268-6

  • Online ISBN: 978-3-031-49269-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics