Skip to main content

On the Biplanarity of Blowups

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14465))

Included in the following conference series:

  • 66 Accesses

Abstract

The 2-blowup of a graph is obtained by replacing each vertex with two non-adjacent copies; a graph is biplanar if it is the union of two planar graphs. We disprove a conjecture of Gethner that 2-blowups of planar graphs are biplanar: iterated Kleetopes are counterexamples. Additionally, we construct biplanar drawings of 2-blowups of planar graphs whose duals have two-path induced path partitions, and drawings with split thickness two of 2-blowups of 3-chromatic planar graphs, and of graphs that can be decomposed into a Hamiltonian path and a dual Hamiltonian path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Blowups are a standard concept but their notation varies significantly. Other choices from the literature include G(k), G[k], \(G^k\), and \(G^{(k)}\).

References

  1. Albertson, M.O., Boutin, D.L., Gethner, E.: The thickness and chromatic number of \(r\)-inflated graphs. Discret. Math. 310(20), 2725–2734 (2010). https://doi.org/10.1016/j.disc.2010.04.019

    Article  MathSciNet  Google Scholar 

  2. Battle, J., Harary, F., Kodama, Y.: Every planar graph with nine points has a nonplanar complement. Bull. Am. Math. Soc. 68, 569–571 (1962). https://doi.org/10.1090/S0002-9904-1962-10850-7

    Article  MathSciNet  Google Scholar 

  3. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000). https://doi.org/10.7155/jgaa.00023

    Article  MathSciNet  Google Scholar 

  4. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discret. Comput. Geom. 37(4), 641–670 (2007). https://doi.org/10.1007/s00454-007-1318-7

    Article  MathSciNet  Google Scholar 

  5. Duncan, C.A., Eppstein, D., Kobourov, S.: The geometric thickness of low degree graphs. In: Snoeyink, J., Boissonnat, J.D. (eds.) Proceedings of the 20th ACM Symposium on Computational Geometry, Brooklyn, New York, USA, 8–11 June 2004, pp. 340–346. ACM (2004). https://doi.org/10.1145/997817.997868

  6. Eppstein, D.: Dynamic generators of topologically embedded graphs. In: Proceedings of the Fourteenth Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, Maryland, USA, 12–14 January 2003, pp. 599–608. Association for Computing Machinery and Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  7. Eppstein, D.: Separating thickness from geometric thickness. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 75–86. American Mathematical Society (2004)

    Google Scholar 

  8. Eppstein, D.: On polyhedral realization with isosceles triangles. Graphs Comb. 37(4), 1247–1269 (2021). https://doi.org/10.1007/s00373-021-02314-9

    Article  MathSciNet  Google Scholar 

  9. Eppstein, D., et al.: On the planar split thickness of graphs. Algorithmica 80(3), 977–994 (2018). https://doi.org/10.1007/s00453-017-0328-y

    Article  MathSciNet  Google Scholar 

  10. Gardner, M.: Mathematical Games: the coloring of unusual maps leads into uncharted territory. Sci. Am. 242(2), 14–23 (1980). https://doi.org/10.1038/scientificamerican0280-14

    Article  Google Scholar 

  11. Gethner, E.: To the moon and beyond. In: Gera, R., Haynes, T.W., Hedetniemi, S.T. (eds.) Graph Theory. PBM, pp. 115–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97686-0_11

    Chapter  Google Scholar 

  12. Grötzsch, H.: Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe 8, 109–120 (1959)

    Google Scholar 

  13. Grünbaum, B.: Unambiguous polyhedral graphs. Israel J. Math. 1(4), 235–238 (1963). https://doi.org/10.1007/BF02759726

    Article  MathSciNet  Google Scholar 

  14. Halton, J.H.: On the thickness of graphs of given degree. Inf. Sci. 54(3), 219–238 (1991). https://doi.org/10.1016/0020-0255(91)90052-V

    Article  MathSciNet  Google Scholar 

  15. Heawood, P.J.: Map colour theorem. Q. J. Math. 24, 332–338 (1890)

    Google Scholar 

  16. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Semin. Univ. Hambg. 39, 88–95 (1973). https://doi.org/10.1007/BF02992822

    Article  MathSciNet  Google Scholar 

  17. Kotzig, A.: Contribution to the theory of Eulerian polyhedra. Matematicko-Fyzikálny Časopis 5, 101–113 (1955)

    MathSciNet  Google Scholar 

  18. Le, H.O., Le, V.B., Müller, H.: Splitting a graph into disjoint induced paths or cycles. Discret. Appl. Math. 131(1), 199–212 (2003). https://doi.org/10.1016/S0166-218X(02)00425-0

    Article  MathSciNet  Google Scholar 

  19. Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937). https://doi.org/10.1215/S0012-7094-37-00336-3

    Article  MathSciNet  Google Scholar 

  20. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Cambridge Philos. Soc. 93(1), 9–23 (1983). https://doi.org/10.1017/S030500410006028X

    Article  MathSciNet  Google Scholar 

  21. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961). https://doi.org/10.1112/jlms/s1-36.1.445

    Article  MathSciNet  Google Scholar 

  22. Ringel, G.: Färbungsprobleme auf Flächen und Graphen, Mathematische Monographien, vol. 2. VEB Deutscher Verlag der Wissenschaften, Berlin (1959)

    Google Scholar 

  23. Steinitz, E.: Polyeder und Raumeinteilungen. In: Encyclopädie der mathematischen Wissenschaften, vol. IIIAB12, pp. 1–139 (1922)

    Google Scholar 

  24. Sýkora, O., Székely, L.A., Vrt’o, I.: A note on Halton’s conjecture. Inf. Sci. 164(1–4), 61–64 (2004). https://doi.org/10.1016/j.ins.2003.06.008

    Article  MathSciNet  Google Scholar 

  25. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. (Third Series) 13, 743–767 (1963). https://doi.org/10.1112/plms/s3-13.1.743

    Article  MathSciNet  Google Scholar 

  26. Tutte, W.T.: The non-biplanar character of the complete 9-graph. Can. Math. Bull. 6, 319–330 (1963). https://doi.org/10.4153/CMB-1963-026-x

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSF grant CCF-2212129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eppstein, D. (2023). On the Biplanarity of Blowups. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49272-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49271-6

  • Online ISBN: 978-3-031-49272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics