Skip to main content

Min-k-planar Drawings of Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

The study of nonplanar drawings of graphs with restricted crossing configurations is a well-established topic in graph drawing, often referred to as beyond-planar graph drawing. One of the most studied types of drawings in this area are the k-planar drawings \((k \ge 1)\), where each edge cannot cross more than k times. We generalize k-planar drawings, by introducing the new family of min-k-planar drawings. In a min-k-planar drawing edges can cross an arbitrary number of times, but for any two crossing edges, one of the two must have no more than k crossings. We prove a general upper bound on the number of edges of min-k-planar drawings, a finer upper bound for \(k=3\), and tight upper bounds for \(k=1,2\). Also, we study the inclusion relations between min-k-planar graphs (i.e., graphs admitting min-k-planar drawings) and k-planar graphs.

Research started at the Summer Workshop on Graph Drawing (SWGD) 2022, and partially supported by: (i) University of Perugia, Ricerca Base, Proj. AIDMIX (2021) and RICBA22CB; (ii) MUR PRIN Proj. 2022TS4Y3N - “EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data”; (iii) MUR PRIN Proj. 2022ME9Z78 - “NextGRAAL: Next-generation algorithms for constrained GRAph visuALization”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

  2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002

    Article  MathSciNet  Google Scholar 

  3. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. In: Brandenburg, F. (ed.) GD 1995. LNCS, vol. 1027, pp. 1–7. Springer, Cham (1995). https://doi.org/10.1007/BFb0021784

    Chapter  Google Scholar 

  4. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997). https://doi.org/10.1007/BF01196127

    Article  MathSciNet  Google Scholar 

  5. Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

    Article  MathSciNet  Google Scholar 

  6. Angelini, P., Bekos, M.A., Kaufmann, M., Schneck, T.: Efficient generation of different topological representations of graphs beyond-planarity. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 253–267. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_20

    Chapter  Google Scholar 

  7. Angelini, P., Bekos, M.A., Kaufmann, M., Schneck, T.: Efficient generation of different topological representations of graphs beyond-planarity. J. Graph Algorithms Appl. 24(4), 573–601 (2020). https://doi.org/10.7155/jgaa.00531

    Article  MathSciNet  Google Scholar 

  8. Bachmaier, C., Rutter, I., Stumpf, P.: 1-gap planarity of complete bipartite graphs. In: Biedl, T.C., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 646–648. Springer, Cham (2018)

    Google Scholar 

  9. Bae, S.W., et al.: Gap-planar graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 531–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_41

    Chapter  Google Scholar 

  10. Bae, S.W., et al.: Gap-planar graphs. Theor. Comput. Sci. 745, 36–52 (2018). https://doi.org/10.1016/j.tcs.2018.05.029

    Article  MathSciNet  Google Scholar 

  11. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_17

    Chapter  Google Scholar 

  12. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/s00453-016-0200-5

    Article  MathSciNet  Google Scholar 

  13. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) SoCG. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16

  14. Binucci, C., et al.: Min-\(k\)-planar drawings of graphs. CoRR 2308.13401 (2023). https://arxiv.org/abs/2308.13401

  15. Binucci, C., et al.: Nonplanar graph drawings with \(k\) vertices per face. In: Paulusma, D., Ries, B. (eds.) WG 2023. LNCS, vol. 14093, pp. 86–100. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43380-1_7

    Chapter  Google Scholar 

  16. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

    Article  MathSciNet  Google Scholar 

  17. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Tollis, I.G.: Fan-planar graphs: combinatorial properties and complexity results. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 186–197. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_16

    Chapter  Google Scholar 

  18. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math. Nachr. 117, 323–339 (1984)

    Article  MathSciNet  Google Scholar 

  19. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/10.1137/120872310

    Article  MathSciNet  Google Scholar 

  20. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)

    Google Scholar 

  21. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281

  22. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. 2011 (2011)

    Google Scholar 

  23. Förster, H., Kaufmann, M., Raftopoulou, C.N.: Recognizing and embedding simple optimal 2-planar graphs. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 87–100. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_6

    Chapter  Google Scholar 

  24. Fox, J., Pach, J., Suk, A.: The number of edges in \(k\)-quasi-planar graphs. SIAM J. Discret. Math. 27(1), 550–561 (2013). https://doi.org/10.1137/110858586

    Article  MathSciNet  Google Scholar 

  25. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-007-0010-x

    Article  MathSciNet  Google Scholar 

  26. Hong, S., Tokuyama, T. (eds.): Beyond Planar Graphs. Springer, Cham (2020). https://doi.org/10.1007/978-981-15-6533-5

    Book  Google Scholar 

  27. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Electron. J. Comb. 29(1) (2022). https://doi.org/10.37236/10521

  28. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002

    Article  MathSciNet  Google Scholar 

  29. Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Computat. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9

    Article  MathSciNet  Google Scholar 

  30. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 345–354. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_59

    Chapter  Google Scholar 

  31. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

    Article  MathSciNet  Google Scholar 

  32. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb. 29, 107–117 (1965)

    Article  MathSciNet  Google Scholar 

  33. Wood, D.R., Telle, J.A.: Planar decompositions and the crossing number of graphs with an excluded minor. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 150–161. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_16

    Chapter  Google Scholar 

  34. Wood, D.R., Telle, J.A.: Planar decompositions and the crossing number of graphs with an excluded minor. New York J. Math. 13, 117–146 (2007). https://nyjm.albany.edu/j/2007/13-8.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Binucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binucci, C. et al. (2023). Min-k-planar Drawings of Graphs. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49272-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49271-6

  • Online ISBN: 978-3-031-49272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics