Abstract
The study of nonplanar drawings of graphs with restricted crossing configurations is a well-established topic in graph drawing, often referred to as beyond-planar graph drawing. One of the most studied types of drawings in this area are the k-planar drawings \((k \ge 1)\), where each edge cannot cross more than k times. We generalize k-planar drawings, by introducing the new family of min-k-planar drawings. In a min-k-planar drawing edges can cross an arbitrary number of times, but for any two crossing edges, one of the two must have no more than k crossings. We prove a general upper bound on the number of edges of min-k-planar drawings, a finer upper bound for \(k=3\), and tight upper bounds for \(k=1,2\). Also, we study the inclusion relations between min-k-planar graphs (i.e., graphs admitting min-k-planar drawings) and k-planar graphs.
Research started at the Summer Workshop on Graph Drawing (SWGD) 2022, and partially supported by: (i) University of Perugia, Ricerca Base, Proj. AIDMIX (2021) and RICBA22CB; (ii) MUR PRIN Proj. 2022TS4Y3N - “EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data”; (iii) MUR PRIN Proj. 2022ME9Z78 - “NextGRAAL: Next-generation algorithms for constrained GRAph visuALization”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574
Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002
Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. In: Brandenburg, F. (ed.) GD 1995. LNCS, vol. 1027, pp. 1–7. Springer, Cham (1995). https://doi.org/10.1007/BFb0021784
Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997). https://doi.org/10.1007/BF01196127
Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006
Angelini, P., Bekos, M.A., Kaufmann, M., Schneck, T.: Efficient generation of different topological representations of graphs beyond-planarity. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 253–267. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_20
Angelini, P., Bekos, M.A., Kaufmann, M., Schneck, T.: Efficient generation of different topological representations of graphs beyond-planarity. J. Graph Algorithms Appl. 24(4), 573–601 (2020). https://doi.org/10.7155/jgaa.00531
Bachmaier, C., Rutter, I., Stumpf, P.: 1-gap planarity of complete bipartite graphs. In: Biedl, T.C., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 646–648. Springer, Cham (2018)
Bae, S.W., et al.: Gap-planar graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 531–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_41
Bae, S.W., et al.: Gap-planar graphs. Theor. Comput. Sci. 745, 36–52 (2018). https://doi.org/10.1016/j.tcs.2018.05.029
Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_17
Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/s00453-016-0200-5
Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) SoCG. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16
Binucci, C., et al.: Min-\(k\)-planar drawings of graphs. CoRR 2308.13401 (2023). https://arxiv.org/abs/2308.13401
Binucci, C., et al.: Nonplanar graph drawings with \(k\) vertices per face. In: Paulusma, D., Ries, B. (eds.) WG 2023. LNCS, vol. 14093, pp. 86–100. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43380-1_7
Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020
Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Tollis, I.G.: Fan-planar graphs: combinatorial properties and complexity results. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 186–197. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_16
Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math. Nachr. 117, 323–339 (1984)
Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/10.1137/120872310
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)
Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281
Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. 2011 (2011)
Förster, H., Kaufmann, M., Raftopoulou, C.N.: Recognizing and embedding simple optimal 2-planar graphs. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 87–100. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_6
Fox, J., Pach, J., Suk, A.: The number of edges in \(k\)-quasi-planar graphs. SIAM J. Discret. Math. 27(1), 550–561 (2013). https://doi.org/10.1137/110858586
Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-007-0010-x
Hong, S., Tokuyama, T. (eds.): Beyond Planar Graphs. Springer, Cham (2020). https://doi.org/10.1007/978-981-15-6533-5
Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Electron. J. Comb. 29(1) (2022). https://doi.org/10.37236/10521
Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002
Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Computat. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 345–354. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_59
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922
Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb. 29, 107–117 (1965)
Wood, D.R., Telle, J.A.: Planar decompositions and the crossing number of graphs with an excluded minor. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 150–161. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_16
Wood, D.R., Telle, J.A.: Planar decompositions and the crossing number of graphs with an excluded minor. New York J. Math. 13, 117–146 (2007). https://nyjm.albany.edu/j/2007/13-8.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Binucci, C. et al. (2023). Min-k-planar Drawings of Graphs. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49272-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49271-6
Online ISBN: 978-3-031-49272-3
eBook Packages: Computer ScienceComputer Science (R0)