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Abstract. The study of nonplanar drawings of graphs with restricted
crossing configurations is a well-established topic in graph drawing, often
referred to as beyond-planar graph drawing. One of the most studied types
of drawings in this area are the k-planar drawings (k ≥ 1), where each
edge cannot cross more than k times. We generalize k-planar drawings, by
introducing the new family of min-k-planar drawings. In a min-k-planar
drawing edges can cross an arbitrary number of times, but for any two
crossing edges, one of the two must have no more than k crossings. We
prove a general upper bound on the number of edges of min-k-planar
drawings, a finer upper bound for k = 3, and tight upper bounds for k =
1, 2. Also, we study the inclusion relations between min-k-planar graphs
(i.e., graphs admitting min-k-planar drawings) and k-planar graphs. In
our setting we only allow simple drawings, that is, any two edges cross
at most once, no two adjacent edges cross, and no three edges intersect
at a common crossing point.
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1 Introduction

Beyond planarity [21,26] is a recent area of focus in graph drawing and topo-
logical graph theory, having its foundations established in the 1970s and 1980s.
It comprises works on graphs that go beyond planar graphs in the sense that
several, mostly local, crossing configurations are forbidden. The simplest are 1-
planar graphs, where at most one crossing per edge is allowed [28,32], and their
generalization k-planar graphs, where at most k ≥ 1 crossings per edge are toler-
ated [14,21,25,30,31]. Other prominent examples of graph classes are fan-planar
graphs [12,13,16,17,27], where several edges might cross the same edge but they
should be adjacent to the same vertex, and k-gap-planar graphs (k ≥ 1) [9,10,11],
where for each pair of crossing edges one of the two edges contains a small gap
through which the other edge can pass, and at most k gaps per edge are allowed.
Another popular family is the one of k-quasiplanar graphs, which forbids k mu-
tually crossing edges [2,3,4,5,24]. Mostly, edge density and inclusion relations of
different beyond-planar graph classes have been studied [5,21,26].

In this paper we introduce a new graph family that generalizes k-planar
graphs by permitting certain edges to have more than k crossings. Namely, for
each two crossing edges we require that at least one of them contains at most k
crossings. Formally, this graph family is defined as follows:

Definition 1. A graph G is min-k-planar (k ≥ 1) if it admits a drawing on
the plane, called min-k-planar drawing, such that for any two crossing edges e
and e′ it holds min{cr(e), cr(e′)} ≤ k , where cr(e) and cr(e′) are the number of
crossings of e and e′, respectively.

Clearly, every k-planar drawing Γ is also min-k-planar, but not vice versa.
A crossing edge in Γ with more than k crossings is heavy, otherwise it is light.
There are two main motivations behind the study of min-k-planar graphs:

(i) From a theoretical perspective, when a graph is not k-planar we may want to
draw it by allowing some heavy edges, whose removal yields a k-planar drawing.
In this respect, if m is the total number of edges in the graph, we will prove that
the number of heavy edges in a min-k-planar drawing is at most k

2k+1 ·m, which
varies in the interval [m3 ,

m
2 ).

(ii) From a practical perspective, even if a graph is k-planar, allowing (few)
pairwise-independent heavy edges may reduce the visual complexity of the lay-
out, even when the total number of crossings grows. For example, Fig. 1 shows
two drawings of the same portion of a graph. Despite the drawing in Fig. 1(a)
is 2-planar and has fewer crossings in total, the one in Fig. 1(b) appears more
readable; it is not 2-planar, but it is min-2-planar.

Min-k-planar graphs are also implicitly studied in [33,34], proving that the
underlying graph of a convex min-k-planar drawing has treewidth 3k + 11.

Contribution. We study the edge density of min-k-planar graphs (Section 3)
and their inclusion relations with k-planar graphs (Section 4). In our setting
we only allow simple drawings, that is, any two edges cross at most once, no
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(a) 2-planar drawing
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(b) min-2-planar drawing

Fig. 1. Two drawings of the same portion of a graph: (a) is 2-planar and has 10
crossings; (b) is min-2-planar, is not 2-planar, and has 12 crossings; it contains two
“heavy” edges incident to vertex 6, each with several crossings.

two adjacent edges cross, and no three edges intersect at a common crossing
point. After giving general bounds on edge and crossing numbers, we focus on
k ∈ {1, 2, 3}:
− We provide tight upper bounds on the maximum number of edges of min-1-
planar and min-2-planar graphs. Namely, we prove that n-vertex min-1-planar
graphs and min-2-planar graphs have at most 4n− 8 edges and at most 5n− 10
edges, respectively, as for 1-planar and 2-planar graphs. For min-3-planar graphs
we give an upper bound of 6n−12 and show min-3-planar graphs with 5.6n−O(1)
edges, hence having density higher than the one of every 3-planar graph.

− Despite the maximum density of min-k-planar graphs for k = 1, 2 equals the
one of k-planar graphs, we show that 1-planar and 2-planar graphs are proper
sub-classes of min-1-planar and min-2-planar graphs (as for k = 3). However,
the min-1-planar graphs that can reach the maximum density of 4n− 8 are also
1-planar (i.e., the two classes coincide), while this is not true for k = 2, 3.

Section 2 introduces notation and terminology; final remarks and open prob-
lems are in Section 5. All full proofs are in the appendix.

2 Basic Definitions

We only deal with connected graphs. A graph is simple if it does not contain
multiple edges and self-loops. A graph with multiple edges but not self-loops is
also called a multi-graph. Let G be any (not necessarily simple) graph. We denote
by V (G) and E(G) the set of vertices and the set of edges of G, respectively. A
drawing Γ of G maps each vertex v ∈ V (G) to a distinct point in the plane and
each edge uv ∈ E(G) to a simple Jordan arc between the points corresponding to
u and v. We always assume that Γ is a simple drawing, that is: (i) two adjacent
edges (i.e., edges that share a vertex) do not intersect, except at their common



endpoint (in particular, no edge is self-crossing); (ii) two independent (i.e. non-
adjacent) edges intersect at most in one of their interior points, called a crossing
point ; (iii) no three edges intersect at a common crossing point.

Let Γ be a drawing of G. A vertex of Γ is either a point corresponding to
a vertex of G, called a real-vertex, or a point corresponding to a crossing point,
called a crossing-vertex or simply a crossing. We remark that in the literature a
plane graph obtained by replacing crossing points with dummy vertices is often
referred to as a planarization [20]. We denote by V (Γ ) the set of vertices of Γ .
An edge of Γ is a curve connecting two vertices of Γ . We denote by E(Γ ) the
set of edges of Γ . An edge e ∈ E(Γ ) is a portion of an edge in E(G), which we
denote by e; if both the endpoints of e are real-vertices, then e and e coincide.

Drawing Γ subdivides the plane into topologically connected regions, called
faces. The boundary of a face consists of a cyclical sequence of vertices (real-
or crossing-vertices) and edges of Γ . We denote by F (Γ ) the set of faces of Γ .
Exactly one face in F (Γ ) corresponds to an infinite region of the plane, called the
external face of Γ ; the other faces are the internal faces of Γ . If the boundary of
a face f of Γ contains a vertex v (or an edge e), we say that f contains v (or e).

In the following, if not specified, we denote by n = |V (G)| and m = |E(G)|
the number of vertices and the number of edges of G, respectively.

Degree of vertices and faces. For a vertex v ∈ V (G), denote by degG(v)
the degree of v in G, i.e., the number of edges incident to v. Analogously, for
a vertex v ∈ V (Γ ), denote by degΓ (v) the degree of v in Γ . Note that, if v ∈
V (G) then degΓ (v) = degG(v), while if v is a crossing-vertex then degΓ (v) = 4.
For a face f ∈ F (Γ ), denote by degΓ (f) the degree of f , i.e., the number of
times we traverse vertices (either real- or crossing-vertices) while walking on
the boundary of f clockwise. Each vertex contributes to degΓ (f) the number
of times we traverse it (possibly more than once if the boundary of f is not
a simple cycle). Also, denote by degrΓ (f) the real-vertex degree of f , i.e., the
number of times we traverse a real-vertex of Γ while walking on the boundary
of f clockwise. Again, each real-vertex contributes to degrΓ (f) the number of
times we traverse it. Finally, degcΓ (f) denotes the number of times we traverse
a crossing-vertex of Γ while walking on the boundary of f clockwise. Clearly,
degΓ (f) = degrΓ (f) + degcΓ (f).

We say that a face f ∈ F (Γ ) is an h-real face, for h ≥ 0, if degrΓ (f) = h.
An h-real face of degree d is called an h-real d-gon. For k = 2, 3, 4, 5, 6, a face
that is an h-real k-gon, is also called an h-real bigon (k = 2), an h-real triangle
(k = 3), an h-real quadrilateral (k = 4), an h-real pentagon (k = 5), and an
h-real hexagon (k = 6), respectively. An edge e = uv ∈ E(Γ ) is an h-real edge
(h ∈ {0, 1, 2}) if |{u, v} ∩ V (G)| = h, i.e., e contains h real-vertices.

Beyond-planar graphs. A family F of beyond-planar graphs is a set of (non-
planar) graphs that admit drawings with desired or forbidden edge-crossing con-
figurations [21]. The edge density of a graph G ∈ F is the ratio between its
number m of edges and its number n of vertices. Graph G is maximally dense if
it has the maximum edge density over all graphs of F with n vertices. Graph G



is optimal if it has the maximum edge density over all graphs in F . Note that
F might not contain optimal graphs for all values of n (see, e.g., [21]).

3 Edge Density of Min-k-planar Graphs

We start by proving some general bounds on the number of crossings in a min-
k-planar drawing and on the number of edges of min-k-planar graphs.

Property 1. Any min-k-planar drawing Γ of a graph G (with k ≥ 1) has at most
k · ℓ crossings, where ℓ is the number of light edges of G in Γ .

Proof. Two heavy edges cannot cross, thus each crossing in Γ belongs to at least
one light edge. Since each light edge has at most k crossings, the bound follows. ⊓⊔

Property 2. Let Γ be a min-k-planar drawing of anm-edge graphG (with k ≥ 1).
The number of heavy edges of G in Γ is at most k

2k+1 ·m.

Proof. Let h and ℓ be the number of heavy edges and the number of light edges
of G in Γ , respectively. Observe that m ≥ h+ ℓ. By definition, each heavy edge
contains at least (k + 1) crossings, and two heavy edges do not cross. Hence,
the number of crossings in Γ is at least h · (k + 1). By Property 1, we have
h · (k + 1) ≤ k · ℓ ≤ k ·m− k · h, which implies h ≤ k

2k+1 ·m. ⊓⊔

We now give a general bound on the edge density of min-k-planar simple
graphs, for any k ≥ 2. Finer bounds for k = 1, 2, 3 are given in the next sections.

Theorem 1. For any min-k-planar simple graph G with n vertices and m edges
it holds m ≤ min{5.39

√
k · n, (3.81

√
k + 3) · n} when k ≥ 2.

Proof (Sketch). Let µ = min{5.39
√
k · n, (3.81

√
k + 3) · n}. Note that µ =

5.39
√
k · n when 2 ≤ k ≤ 3, while µ = (3.81

√
k + 3) · n when k ≥ 4.

Suppose first that 2 ≤ k ≤ 3. If m < 6.95n, the relation m ≤ 5.39
√
k ·n triv-

ially holds. If m ≥ 6.95n, let cr(G) be the minimum number of crossings required
by any min-k-planar drawing Γ of G. The improved version by Ackerman of the

popular Crossing Lemma (Theorem 6 in [1]) implies that cr(G) ≥ 1
29

m3

n2 . If ℓ is
the number of light edges of G in Γ , by Property 1 we have cr(G) ≤ k · ℓ ≤ k ·m.

Hence 1
29

m3

n2 ≤ k ·m, which yields m ≤ 5.39
√
k · n.

Suppose now that k ≥ 4 and let Γ be any min-k-planar drawing of G with
ℓ light edges. Since no two heavy edges cross, the subgraph of G consisting of
all heavy and crossing-free edges in Γ has at most 3n − 6 edges, hence m ≤
ℓ+3n− 6. Let G′ be the subgraph of G consisting of the ℓ light edges of G only.
By applying Ackerman’s version of the Crossing Lemma to G′, one can prove
that ℓ ≤ 3.81

√
k · n. Therefore, m ≤ ℓ+ 3n− 6 ≤ ℓ+ 3n ≤ (3.81

√
k + 3) · n. ⊓⊔



3.1 Density of Min-1-planar graphs

Let Γ be a min-1-planar drawing of a graph G. We color each edge of E(G)
either red or green with the following rule: (i) edges that are crossing-free in Γ
are colored red; (ii) if {e1, e2} ∈ E(G) is a pair of edges that cross in Γ , with
cr(e1) ≥ cr(e2), we color e1 as green and e2 as red (if cr(e1) = cr(e2) = 1, the red
edge is chosen arbitrarily). Note that, since Γ is a min-1-planar drawing, each
red edge is crossed at most once, hence the above coloring rule is well-defined. In
particular, heavy edges are always colored green, while if two light edges cross,
one is colored green and the other is colored red. Hence, the subgraph induced
by the red edges is a plane graph, called the red subgraph of G defined by Γ , or
simply the red subgraph of Γ . The following lemma is proved in Appendix A.1.

Lemma 1. Let G be a simple graph and let Γ be a min-1-planar drawing of G.
We can always augment Γ with edges in such a way that the new drawing is still
min-1-planar and all faces of its red subgraph have degree three.

We now prove a tight bound on the edge density of min-1-planar graphs.

Theorem 2. Any n-vertex min-1-planar simple graph has at most 4n−8 edges,
and this bound is tight.

Proof. Let Γ be a min-1-planar drawing of a simple graph G with n vertices.
By Lemma 1, we can augment Γ (and hence G) with new edges, in such a way
that the new drawing Γ ′ (and the corresponding graph G′) is min-1-planar and
its red subgraph Γ ′

r is a triangulated planar graph. Hence, Γ ′
r has exactly 3n− 6

edges and 2n− 4 faces. Every green edge of G′ (which is also a green edge of G)
traverses at least two faces of Γ ′

r. Also, since Γ ′ is a min-1-planar drawing and
the red subgraph has only triangular faces, each face of the red subgraph is
crossed by at most one green edge. Hence the number of green edges is at most
2n−4

2 = n − 2, and therefore G′ has at most (3n − 6) + (n − 2) = 4n − 8 edges
in total. Since G is a subgraph of G′, then also G has at most 4n− 8 edges.

About the tightness of the bound, we recall that optimal 1-planar graphs
with n vertices (which are also min-1-planar) have 4n− 8 edges [18,31,32]. ⊓⊔

Plugging the bound of Theorem 2 into the bound of Property 2, we imme-
diately get that any min-1-planar drawing has at most 4

3n− 8
3 heavy edges. We

considerably improve this bound in the next theorem.

Theorem 3. Any n-vertex min-1-planar drawing has at most 2
3n−1 heavy edges.

Further, there exist min-1-planar drawings with 2
3n−O(1) heavy edges.

Proof. Let Γ be a min-1-planar drawing of a simple graph G with n vertices. As
in the proof of Theorem 2, by Lemma 1 we can augment Γ with new red edges,
in such a way that the new drawing Γ ′ is min-1-planar and its red subgraph Γ ′

r

has all faces of degree three. Hence, Γ ′
r has exactly 3n−6 edges and 2n−4 faces.

Clearly, the number of heavy edges of Γ ′ is not smaller than the one of Γ . By
definition, every heavy edge of Γ ′ is crossed at least twice, hence it traverses at
least three faces of Γ ′

r. As before, each face of the red subgraph is crossed by at
most one heavy edge. Hence the number of heavy edges is at most 2n−4

3 ≤ 2
3n−1.

For the lower bound, we refer to the left part of Fig. 11 in the appendix. ⊓⊔



3.2 Density of Min-2-planar graphs

Proving a tight bound on the edge density of min-2-planar graphs is more chal-
lenging than for min-1-planar graphs. Observe that there are min-2-planar simple
graphs with 5n− 10 edges, namely the optimal 2-planar graphs [14]. Each opti-
mal 2-planar drawing consists of a subset of planar edges forming faces of size
five (i.e., pentagons), and each face is filled up with five more edges that cross
each other twice. In the following we prove that 5n− 10 is also an upper bound
to the number of edges of min-2-planar graphs. To this aim, for any k ≥ 1, we
introduce a class of multi-graphs that generalize min-k-planar simple graphs.

Let G be a (multi-)graph (without self-loops) and let Γ be a (simple) drawing
of G. A set of parallel edges of G between the same pair of vertices is called a
bundle of G. We say that Γ is bundle-proper if for every bundle in G: (i) at
most one of the edges of the bundle is involved in a crossing; and (ii) Γ has
no face bounded only by two edges of the bundle (i.e., no face of Γ is a 2-real
bigon). We remark that, in the literature, two parallel edges that form a face
of degree two are called homotopic. Hence, property (ii) is equivalent to saying
that a bundle-proper drawing does not contain homotopic parallel edges.

Graph G is bundle-proper min-k-planar if it admits a (simple) drawing Γ
that is both min-k-planar and bundle-proper. If G has n vertices and has the
maximum number of edges over all bundle-proper min-k-planar n-vertex graphs,
then we say that G is a maximally-dense bundle-proper min-k-planar graph.
Consider a pair (G,Γ ), whereG is an n-vertex bundle-proper min-k-planar graph
and Γ is a bundle-proper min-k-planar drawing of G. We say that (G,Γ ) is
a maximally-dense crossing-minimal bundle-proper min-k-planar pair if G is
maximally-dense and Γ has the minimum number of crossings over all bundle-
proper min-k-planar drawings of maximally-dense bundle-proper min-k-planar
n-vertex graphs. The proof of the next lemma is in Appendix A.1.

Lemma 2. Let (G,Γ ) be a maximally-dense crossing-minimal bundle-proper
min-k-planar pair. These properties hold: (a) If a face f of Γ contains two
distinct real-vertices u and v, then f contains an edge uv. (b) For each face f of
Γ , degΓ (f) ≥ 3. (c) A face f of Γ with degrΓ (f) ≥ 3 is a 3-real triangle.

To prove the upper bound we use discharging techniques. See [1,2,15,22] for
previous works that use this tool. Define a charging function ch : F (Γ ) → R
such that, for each f ∈ F (Γ ):

ch(f) = degΓ (f) + degrΓ (f)− 4 = 2degrΓ (f) + degcΓ (f)− 4 (1)

The value ch(f) is called the initial charge of f . Using Euler’s formula, it is not
difficult to see that the following equality holds (refer to [2] for details):∑

f∈F (Γ )

ch(f) = 4n− 8 (2)

The goal of a discharging technique is to derive from the initial charging function
ch(·) a new function ch′(·) that satisfies two properties: (C1) ch′(f) ≥ α degrΓ (f),
for some real number α > 0; and (C2)

∑
f∈F (Γ ) ch

′(f) ≤
∑

f∈F (Γ ) ch(f).



If α > 0 is a number for which a function ch′(·) satisfies (C1) and (C2), by Eq. (2)
we get: 4n− 8 =

∑
f∈F (Γ ) ch(f) ≥

∑
f∈F (Γ ) ch

′(f) ≥ α
∑

f∈F (Γ ) deg
r
Γ (f). Also,

since
∑

f∈F (Γ ) deg
r
Γ (f) =

∑
v∈V (G) degG(v) = 2m, we get the following:

m ≤ 2

α
(n− 2) (3)

Thus, Eq. (3) can be exploited to prove upper bounds on the edge density of a
graph for specific values of α, whenever we find a charging function ch′(·) that
fulfills (C1) and (C2). We prove the following.

Theorem 4. Any n-vertex min-2-planar simple graph has at most 5n−10 edges,
and this bound is tight.

Proof (Sketch). We already observed that there exist min-2-planar simple graphs
with 5n−10 edges (e.g., the optimal 2-planar graphs). We now prove that min-2-
planar simple graphs have at most 5n− 10 edges. Since any simple graph is also
bundle-proper, we can show that the bound holds more in general for bundle-
proper min-2-planar. Also, we can restrict to maximally-dense bundle-proper
min-2-planar graphs, and in particular to crossing-minimal drawings. Let (G,Γ )
be any maximally-dense crossing-minimal bundle-proper min-2-planar pair, with
|V (G)| = n. We show the existence of a charging function ch′(·) that satisfies
(C1) and (C2) for α = 2

5 , so the result will follow from Eq. (3).
Consider the initial charging function ch(·) defined in Eq. (1). For each type

of triangle t we analyze the value of ch(t) and the deficit/excess w.r.t. 2
5 deg

r
Γ (t).

If t is a 0-real triangle, ch(t) = −1 < 0 = 2
5 deg

r
Γ (t), thus t has a deficit of 1. If

t is a 1-real triangle, ch(t) = 0 < 2
5 = 2

5 deg
r
Γ (t), thus t has a deficit of 2

5 . If t is
a 2-real triangle, ch(t) = 1 > 4

5 = 2
5 deg

r
Γ (t), thus t has an excess of 1

5 . If t is a
3-real triangle, ch(t) = 2 > 6

5 = 2
5 deg

r
Γ (t), thus t has an excess of 4

5 .
Also, if f is any face of Γ with degΓ (f) ≥ 4, then ch(f) = 2 degrΓ (f) +

degcΓ (f) − 4 = degΓ (f) − 4 + degrΓ (f) ≥ degrΓ (f) ≥ 2
5 deg

r
Γ (f). Therefore ch(·)

only fails to satisfy (C1) at 0-real and 1-real triangles. We begin by setting
ch′(f) = ch(f) for each face f of Γ and we explain how to modify ch′(·) in such
a way that ch′(f) ≥ 2

5 deg
r
Γ (f) for each face f ∈ F (Γ ), thus satisfying (C1), and

such that the total charge remains the same, thus satisfying (C2).

Fixing 0-real triangles. Let t be a 0-real triangle in Γ with edges e1, e2, and e3.
Refer to Fig. 2. The edges e1, e2 and e3 are three pairwise crossing edges of G.
Since Γ is a simple drawing, e1, e2 and e3 are independent edges of G (i.e., their
six end-vertices are all distinct). Also, since Γ is min-2-planar, at least two of
these three edges, say e2 and e3, do not cross other edges of G in Γ . This implies
that each of the two end-vertices of e2 shares a face with an end-vertex of e3.
Hence, by Lemma 2(a), the four vertices of e2 and e3 form a 4-cycle e′e2e

′′e3 in
G and Γ contains a 2-real quadrilateral f1 bounded by portions of e′′, e1, e2, e3,
and a 2-real triangle f2 bounded by portions of e′, e2, e3.

The charge of f1 is ch′(f1) = 2, with an excess of 6
5 w.r.t. 2

5 deg
r
Γ (f1) =

4
5 .

The charge of f2 is ch′(f2) = 1, with an excess of 1
5 w.r.t. 2

5 deg
r
Γ (f2) =

4
5 . We
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Fig. 2. (a) A 0-real triangle t. (b) A 2-real quadrilateral f1 and a 2-real triangle f2
neighboring t. (c) The initial charges. (d) The charges after a redistribution.
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Fig. 3. The demand path of a 1-real triangle t, ending at a face fp.

reduce ch′(f1) by 4
5 , reduce ch′(f2) by 1

5 , and increase ch′(t) by 1. After that,
the total charge is unchanged and all the three faces t, f1, and f2 satisfy (C1).
Namely, ch′(t) = 0 (it has no deficit/excess), ch′(f1) = 6

5 (it has an excess of
2
5 ), and ch′(f2) = 4

5 (it has no deficit/excess). In the remainder of the proof,
we call each of the faces f1 and f2 a 0-real triangle-neighboring face. Each 0-
real triangle-neighboring face that is a 2-real triangle (as f2) shares its unique
crossing vertex with a 0-real triangle; each 0-real triangle-neighboring face that is
a 2-real quadrilateral (as f1) shares its unique 0-real edge with a 0-real triangle.

Fixing 1-real triangles. Let t be a 1-real triangle, with real-vertex v1 and crossing-
vertices v2 and v3. Refer to Fig. 3 for an illustration. Let e0 = v2v3 be the 0-real
edge of t, and let f1 be the face of Γ that shares e0 with t. If f1 is a 0-real
quadrilateral, denote by e1 the 0-real edge of f1 not adjacent to e0, and by f2
the face of Γ that shares e1 with f1. If f2 is a 0-real quadrilateral, denote by e2
the 0-real edge of f2 not adjacent to e1, and by f3 the face of Γ that shares e2 with
f2. We continue in this way until we encounter a face fp (p ≥ 1) that is not a 0-
real quadrilateral. This procedure determines a sequence of faces f0, f1, f2, . . . fp,
and a sequence of 0-real edges e0, e1, . . . , ep−1 such that f0 = t, fi is a 0-real
quadrilateral for each i ∈ {1, . . . , p− 1}, fp is not a 0-real quadrilateral, and the
faces fi and fi−1 share edge ei−1 (i ∈ {1, . . . , p}).

Note that degΓ (fp) ≥ 4. Namely, let e = v1v2 and e′ = v1v3, and let e = v1u
and e′ = v1w be the edges of G that contain e and e′. Since fp has at least two
crossing-vertices, if fp were a triangle then it would be either a 0-real triangle or



a 1-real triangle. If fp were a 0-real triangle then e and e′ would cross in Γ , which
is impossible as e and e′ are adjacent edges and Γ is a simple drawing. If fp were
a 1-real triangle then u = w, i.e., e and e′ would be parallel edges both involved
in a crossing, which is impossible as Γ is bundle-proper. Hence, degΓ (fp) ≥ 4
and, as observed at the beginning of this proof, ch′(fp) ≥ 2

5 deg
r
Γ (fp). Also, the

charge excess of fp is larger than 2
5 . Namely, this excess is x = 2degrΓ (fp) +

degcΓ (fp)− 4− 2
5 deg

r
Γ (fp) = degΓ (f)+

3
5 deg

r
Γ (f)− 4. If fp has no real-vertices,

it must have at least five crossing-vertices (as fp is not a 0-real quadrilateral),
which implies x ≥ 1 > 2

5 . If fp has at least one real-vertex then x ≥ 3
5 > 2

5 .
Therefore, the idea is to fill the 2

5 charge deficit of t by moving an equivalent
amount of charge from fp to t. We say that t demands from fp through edge
ep−1 a charge amount of 2

5 . We call f0, . . . , fp (which is a path in the dual of
Γ ) the demand path for t. Hence, for each 1-real triangle t of Γ whose demand
path ends at a face f = fp, we decrease ch′(f) by 2

5 and increase ch′(t) from
0 to 2

5 . Note that f cannot be a 0-real triangle-neighboring face. Indeed, f is
not a triangle, and if f is a 2-real quadrilateral then its 0-real edge is shared
either with a 0-real quadrilateral or directly with the 1-real triangle t. It follows
that the set of faces whose charge is affected by fixing 1-real triangles does not
intersect with the set of faces whose charge is affected by fixing 0-real triangles.

From the reasoning above, after we have fixed all 1-real triangles, we may have
problems only if multiple 1-real triangles demanded from the same face f . In this
case, f might no longer satisfy (C1). The rest of the proof (see Appendix A.1)
shows which faces may be in this situation and how to fix their charge. ⊓⊔

Combining Theorem 4 with Property 2 we immediately get that any min-2-
planar drawing has at most 2n− 4 heavy edges. The next theorem considerably
improves this bound by exploiting discharging techniques (see Appendix A.1).

Theorem 5. Any n-vertex min-2-planar drawing has at most 6
5 (n − 2) heavy

edges. Further, there exist min-2-planar drawings with n−O(1) heavy edges.

3.3 Density of Min-3-planar graphs

For the family of min-3-planar graphs we consider graphs that can contain non-
homotopic parallel edges. Indeed, it is known that n-vertex 3-planar graphs that
are simple have at most 5.5n−15 edges [31], but this bound is not tight. On the
other hand, a tight upper bound is known for 3-planar graphs that can contain
non-homotopic multiple edges, namely 5.5n− 11 [29]. We give upper bounds on
the edge density and on the density of the heavy edges in min-3-planar graphs.
The proofs still exploit discharging techniques (see Appendix A.1).

Theorem 6. Any min-3-planar graph with n vertices has at most 6n−12 edges.

Theorem 7. Any n-vertex min-3-planar drawing has at most 2(n − 2) heavy
edges. Further, there exist min-3-planar drawings with 6

5n−O(1) heavy edges.
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Fig. 4. (a) A min-2-planar drawing of K5,5. (b) A planar drawing Γ of the truncated
icosahedral graph G. (c) A min-2-planar drawing Γ ′ of the graph G′, obtained by
adding 5 edges to each pentagonal face and 7 edges to each hexagonal face of Γ .

4 Relationships with k-planar Graphs

The next theorem shows that while the family of min-1-planar graphs properly
contains the family of 1-planar graphs, the two classes coincide when we restrict
to optimal graphs, i.e., those with 4n− 8 edges.

Theorem 8. 1-planar graphs are a proper subset of min-1-planar graphs, while
optimal min-1-planar graphs are optimal 1-planar.

Proof. Any 1-planar graph is min-1-planar. By the NP-hardness of testing whether
a given planar graph plus a single edge is 1-planar [19], we know that there are
such graphs that are not 1-planar, while any planar graph that is extended by
a single edge can be drawn min-1-planar. Hence, 1-planar graphs are a proper
subset of min-1-planar graphs. Finally, as in the proof of Theorem 2, in every op-
timal min-1-planar drawing the red subgraph is maximal planar and each green
edge traverses exactly two faces of the red subgraph. Hence, each green edge
crosses exactly once, i.e., the drawing is also (optimal) 1-planar. ⊓⊔

Unlike min-1-planar graphs, we show that min-2-planar graphs are a proper
superset of the 2-planar graphs even when we restrict to optimal graphs.

Theorem 9. 2-planar graphs are a proper subset of min-2-planar graphs, and
there are optimal min-2-planar graphs that are not optimal 2-planar.

Proof (Sketch). First observe that there exist non-optimal min-2-planar graphs
that are not 2-planar. For example, K5,5 is not 2-planar [6,7], while Fig. 4(a)
illustrates a min-2-planar drawing of K5,5. To construct an optimal min-2-
planar graph that is not 2-planar, start from the truncated icosahedral graph
in Fig. 4(b), consisting of 12 pentagonal faces, 20 hexagonal faces, 60 vertices
and 90 edges. Then enrich it with 5 edges inside each pentagonal face and 7
edges inside each hexagonal face, as in Fig. 4(c). The new graph is min-2-planar



u v

(a)

u v

(b)

Fig. 5. Illustration of the construction of Theorem 10. If in the graph of figure (a) we
replace each shaded chain with a copy of the graph of figure (b), we get a min-3-planar
graph that is not 3-planar. The bold edges are heavy edges.

and has 5n − 10 edges. Conversely, it is not 2-planar as it contains vertices of
degree 10 and 11, while it is known that optimal 2-planar graphs must have only
vertices with degree multiple of three [23]. See Appendix A.2 for details. ⊓⊔

In contrast to 1- and 2-planar graphs, the maximum densities of 3-planar
and min-3-planar graphs differ.

Theorem 10. There are min-3-planar (non-simple) graphs denser than optimal
3-planar (non-simple) graphs.

Proof (Sketch). First, consider a planar graph G, and a corresponding drawing
Γ , consisting of h parallel chains (h ≥ 1), each with 8 vertices, sharing the two
end-vertices u and v, and interleaved by h copies of edge uv; refer to Fig. 5(a).
Then, construct a new graph G′, and a corresponding drawing Γ ′, obtained
from G, and from Γ , by replacing each parallel chain with a copy of the graph
G′′ depicted in Fig. 5(b). In the drawing Γ ′, each copy of G′′ has the same edge
crossings as the drawing illustrated in Fig. 5(b). Graph G′′ has 8 vertices and 33
edges, and it is min-3-planar. The bold edges are the heavy edges in the drawing
of Fig. 5(b)). It can be proved that G′′ has 5.6n− 11.3 edges, while it is known
that every 3-planar graph has at most 5.5n− 11 edges [29]. ⊓⊔

5 Final Remarks and Open Problems

About edge density, one can ask whether the bound of Theorem 6 for min-3-
planar graphs is tight or if it can be further lowered. Providing finer bounds
for k ≥ 4 is also interesting. Another classical research direction is to establish
inclusion or incomparability relations between min-k-planar graphs and classes of
beyond-planar graphs other than k-planar graphs. The next two lemmas provide
initial results in this direction (see Appendix A.3 for their proofs). In particular,



Lemma 3 leaves as open what is the relationship between min-2-planar graphs
and 1-gap-planar graphs (which have the same maximum edge density). Lemma 4
implies that min-2-planar graphs and fan-planar graphs are incomparable classes,
even if they have the same maximum edge density.

Lemma 3. Min-k-planar graphs are a subset of k-gap-planar graphs and of (k+
2)-quasiplanar graphs, for every k ≥ 1.

Lemma 4. For any given k ≥ 2, fan-planar and min-k-planar graphs are in-
comparable, i.e., each of the two classes contains graphs that are not in the other.
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A Appendix

A.1 Details for Section 3

Theorem 1. For any min-k-planar simple graph G with n vertices and m edges
it holds m ≤ min{5.39

√
k · n, (3.81

√
k + 3) · n} when k ≥ 2.

Proof. Let µ = min{5.39
√
k ·n, (3.81

√
k+3) ·n}. Note that µ = 5.39

√
k ·n when

2 ≤ k ≤ 3, while µ = (3.81
√
k + 3) · n when k ≥ 4. Hence, we prove that for

2 ≤ k ≤ 3 we have m ≤ 5.39
√
k ·n, while for k ≥ 4 we have m ≤ (3.81

√
k+3) ·n.

Suppose first that 2 ≤ k ≤ 3. If m < 6.95n, the relation m ≤ 5.39
√
k · n

trivially holds, as 5.39
√
k · n ≤ 7.63n. If m ≥ 6.95n, let cr(G) be the minimum

number of crossings required by any min-k-planar drawing Γ of G. The improved
version by Ackerman of the popular Crossing Lemma (Theorem 6 in [1]) implies

that cr(G) ≥ 1
29

m3

n2 . If ℓ is the number of light edges of G in Γ , by Property 1

we have cr(G) ≤ k · ℓ ≤ k ·m. Hence 1
29

m3

n2 ≤ k ·m, which yields m ≤ 5.39
√
k ·n.

Suppose now that k ≥ 4 and let Γ be any min-k-planar drawing of G with ℓ
light edges. Since no two heavy edges cross, the subgraph of G consisting of all
heavy and crossing-free edges in Γ has at most 3n−6 edges, hencem ≤ ℓ+3n−6.
Let G′ be the subgraph of G consisting of the ℓ light edges of G only, and let Γ ′

be the restriction of G′ in Γ . We show that ℓ ≤ 3.81
√
k ·n. The relation trivially

holds when ℓ < 6.95n, as k ≥ 4. If ℓ ≥ 6.95n, using Ackerman’s version of the

Crossing Lemma applied to G′, we have cr(G′) ≥ 1
29

ℓ3

n2 . Also, Γ ′ has at most
k·ℓ
2 crossings, because each light edge has at most k crossings and each crossing

is shared by two edges of G′. It follows that 1
29

ℓ3

n2 ≤ k·ℓ
2 , which still implies

ℓ ≤ 3.81
√
k · n. Therefore, m ≤ ℓ+ 3n− 6 ≤ ℓ+ 3n ≤ (3.81

√
k + 3) · n. ⊓⊔

Lemma 1. Let G be a simple graph and let Γ be a min-1-planar drawing of G.
We can always augment Γ with edges in such a way that the new drawing is still
min-1-planar and all faces of its red subgraph have degree three.

Proof. Let Γr be the red subgraph of Γ . Since G is simple, every face of Γ
has degree greater than two. Suppose that Γr has at least one face f such that
degΓr

(f) ≥ 4. We augment Γ with new red edges in two steps, described below.
The augmentation may introduce multiple edges, but it will guarantee that all
faces of the new red subgraph have degree three.
Step 1. Suppose that there exists a face f of Γr with degΓr

(f) ≥ 4 and containing
two vertices u and v that can be connected by an edge uv that splits f
without crossing other edges of Γ . We add edge uv and color it as red (as
it is crossing-free); we also say that this operation augments f . We repeat
this procedure until no such a face f exists. The obtained drawing is still
min-1-planar, since we added only crossing-free edges.

Step 2. Suppose that Γr still contains a face f with degΓr
(f) ≥ 4. Observe that:

(i) Face f is traversed by a green edge in Γ , otherwise it would have been
augmented in Step 1; see Fig. 6(a).
(ii) Every green edge e that traverses f is not incident to any vertex u of
f . Namely, suppose for contradiction that e is incident to a vertex u of f ,



and let er = vw be the red edge of f crossed by e. Since degΓr
(f) ≥ 4, at

least one among v and w, say for example v, is not adjacent to u. However
this implies that either f can be augmented by adding a red edge uv, which
contradicts that we completed Step 1, or there is another green edge that
crosses er, which contradicts that er is crossed at most once; see Fig. 6(b).
(iii) Face f cannot be traversed by two distinct green edges e1 and e2 (refer
to Fig. 6(c)). More precisely, if this is the case, these edges cannot cross each
other and, by property (ii), each of e1 and e2 crosses two distinct red edges
of f . Also, since each red edge is crossed at most once, e1 and e2 cross two
disjoint pairs of red edges of f . Denote by c1 and c′1 (resp. c2 and c′2) the
two crossing points of e1 (resp. e2) with the boundary of f . Assume that
c1, c2, c

′
2, c

′
1 occur in this clockwise order on the boundary of f . This implies

that, while moving clockwise on the boundary of f , there is at least one
vertex u of f between c1 and c2, and at least one vertex v of f between c′2
and c′1. Hence, we can augment f with a red edge uv, which contradicts that
we completed Step 1.
By properties (i), (ii), and (iii), f is traversed by exactly one green edge e;
however this edge cannot leave on the same side two vertices of f that are not
consecutive on its boundary, as otherwise they would have been connected
in Step 1. Hence f is a quadrilateral and e splits f into two equal parts (see
Fig. 6(d)). We can then augment f by adding a diagonal red edge in the
quadrilateral face. We repeat this procedure until Γr contains no face f such
that degΓr

(f) ≥ 4.
⊓⊔

Lemma 2. Let (G,Γ ) be a maximally-dense crossing-minimal bundle-proper
min-k-planar pair. These properties hold: (a) If a face f of Γ contains two
distinct real-vertices u and v, then f contains an edge uv. (b) For each face f of
Γ , degΓ (f) ≥ 3. (c) A face f of Γ with degrΓ (f) ≥ 3 is a 3-real triangle.

Proof. We prove the three properties separately.
(a) Suppose for contradiction that f does not contain an edge uv. Then we can

add (another copy of) edge uv to Γ (and therefore to G) in the interior of
f , without introducing any additional crossings or creating a 2-real bigon.
Since the resulting drawing is bundle-proper min-k-planar, this contradicts
the hypothesis that G is maximally-dense.

f
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er

f

ew v

(b)

f

e2
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u
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(c)

f

e
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Fig. 6. Illustration for the proof of Lemma 1.



(b) Let f be a face of Γ . Since G has no self-loops and Γ is a simple drawing,
then degΓ (f) > 1. Also, since Γ is simple then f is neither a 0-real bigon nor
a 1-real bigon. Finally, since Γ is also bundle-proper, f cannot be a 2-real
bigon. It follows that degΓ (f) > 2.

(c) Suppose degrΓ (f) ≥ 3. If degΓ (f) ≥ 4 then there would be two non-consecutive
real vertices on the boundary of f that are not connected by an edge, which
is impossible by (a). Then f is necessarily a 3-real triangle.

⊓⊔

Theorem 4. Any n-vertex min-2-planar simple graph has at most 5n−10 edges,
and this bound is tight.

Proof. We already observed at the beginning of this section that there exist
min-2-planar simple graphs with 5n − 10 edges (e.g., the optimal 2-planar). It
remains to prove that min-2-planar simple graphs cannot have more than 5n−10
edges. Since any simple graph is also a bundle-proper graph, we can show that the
upper bound holds more in general for multi-graphs that are bundle-proper min-
2-planar. Also, since we want to find an upper bound on the number of edges,
we can restrict our attention to maximally-dense bundle-proper min-2-planar
graphs, and in particular to those having the minimum number of crossings. Let
(G,Γ ) be any maximally-dense crossing-minimal bundle-proper min-2-planar
pair, with |V (G)| = n. We show the existence of a charging function ch′(·) that
satisfies (C1) and (C2) for α = 2

5 , so the result will follow from Eq. (3).
Consider the initial charging function ch(·) defined in Eq. (1). For each type

of triangle t we analyze the value of ch(t) and the deficit/excess w.r.t. 2
5 deg

r
Γ (t).

– If t is a 0-real triangle, ch(t) = −1 < 0 = 2
5 deg

r
Γ (t), thus t has a deficit of 1.

– If t is a 1-real triangle, ch(t) = 0 < 2
5 = 2

5 deg
r
Γ (t), thus t has a deficit of 2

5 .
– If t is a 2-real triangle, ch(t) = 1 > 4

5 = 2
5 deg

r
Γ (t), thus t has an excess of 1

5 .
– If t is a 3-real triangle, ch(t) = 2 > 6

5 = 2
5 deg

r
Γ (t), thus t has an excess of 4

5 .

Also, if f is any face of Γ with degΓ (f) ≥ 4, then ch(f) = 2 degrΓ (f)+degcΓ (f)−
4 = degΓ (f)− 4 + degrΓ (f) ≥ degrΓ (f) ≥ 2

5 deg
r
Γ (f).

Therefore ch(·) only fails to satisfy (C1) at 0-real and 1-real triangles. We
begin by setting ch′(f) = ch(f) for each face f of Γ and we explain how to
modify ch′(·) in such a way that ch′(f) ≥ 2

5 deg
r
Γ (f) for each face f ∈ F (Γ ),

thus satisfying (C1), and the total charge remains the same, thus satisfying (C2).

Fixing 0-real triangles. Let t be a 0-real triangle in Γ with edges e1, e2, and e3.
Refer to Fig. 2. The edges e1, e2 and e3 are three pairwise crossing edges of G.
Since Γ is a simple drawing, e1, e2 and e3 are independent edges of G (i.e., their
six end-vertices are all distinct). Also, since Γ is min-2-planar, at least two of
these three edges, say e2 and e3, do not cross other edges of G in Γ . This implies
that each of the two end-vertices of e2 shares a face with an end-vertex of e3.
Hence, by Lemma 2(a), the four vertices of e2 and e3 form a 4-cycle e′e2e

′′e3 in
G and Γ contains a 2-real quadrilateral f1 bounded by portions of e′′, e1, e2, e3,
and a 2-real triangle f2 bounded by portions of e′, e2, e3.



The charge of f1 is ch′(f1) = 2, with an excess of 6
5 w.r.t. 2

5 deg
r
Γ (f1) =

4
5 .

The charge of f2 is ch′(f2) = 1, with an excess of 1
5 w.r.t. 2

5 deg
r
Γ (f2) =

4
5 . We

reduce ch′(f1) by 4
5 , reduce ch′(f2) by 1

5 , and increase ch′(t) by 1. After that,
the total charge is unchanged and all the three faces t, f1, and f2 satisfy (C1).
Namely, ch′(t) = 0 (it has no deficit/excess), ch′(f1) =

6
5 (it has an excess of 2

5 ),
and ch′(f2) =

4
5 (it has no deficit/excess). In the remainder of the proof, since we

need a way to keep track of the 2-real triangles and 2-real quadrilaterals whose
charge has been modified as described above, we call each of the faces f1 and
f2 a 0-real triangle-neighboring face. Each 0-real triangle-neighboring face that
is a 2-real triangle (as f2) shares its unique 0-real vertex with a 0-real triangle;
each 0-real triangle-neighboring face that is a 2-real quadrilateral (as f1) shares
its unique 0-real edge with a 0-real triangle.

Fixing 1-real triangles. Let t be a 1-real triangle, with real-vertex v1 and crossing-
vertices v2 and v3. Refer to Fig. 3 for an illustration. Let e0 = v2v3 be the 0-real
edge of t, and let f1 be the face of Γ that shares e0 with t. If f1 is a 0-real
quadrilateral, denote by e1 the 0-real edge of f1 not adjacent to e0, and by f2
the face of Γ that shares e1 with f1. If f2 is a 0-real quadrilateral, denote by e2
the 0-real edge of f2 not adjacent to e1, and by f3 the face of Γ that shares e2 with
f2. We continue in this way until we encounter a face fp (p ≥ 1) that is not a 0-
real quadrilateral. This procedure determines a sequence of faces f0, f1, f2, . . . fp,
and a sequence of 0-real edges e0, e1, . . . , ep−1 such that f0 = t, fi is a 0-real
quadrilateral for each i ∈ {1, . . . , p− 1}, fp is not a 0-real quadrilateral, and the
faces fi and fi−1 share edge ei−1 (i ∈ {1, . . . , p}).

Note that degΓ (fp) ≥ 4. Namely, let e = v1v2 and e′ = v1v3, and let e = v1u
and e′ = v1w be the edges of G that contain e and e′. Since fp has at least two
crossing-vertices, if fp were a triangle then it would be either a 0-real triangle
or a 1-real triangle. If fp were a 0-real triangle then e and e′ would cross in Γ ,
which is impossible as e and e′ are adjacent edges and Γ is a simple drawing. If
fp were a 1-real triangle then u = w, i.e., e and e′ would be parallel edges both
involved in a crossing, which is impossible as Γ is bundle-proper.

Therefore, degrΓ (fp) ≥ 4 and, as already observed at the beginning of this
proof, ch′(fp) ≥ 2

5 deg
r
Γ (fp). Also, the charge excess of fp is larger than 2

5 .
Namely, the charge excess of fp is x = 2degrΓ (fp)+degcΓ (fp)− 4− 2

5 deg
r
Γ (fp) =

degΓ (f) +
3
5 deg

r
Γ (f) − 4. If fp has no real-vertices, then it must have at least

five crossing-vertices (because fp is not a 0-real quadrilateral), which implies
x ≥ 1 > 2

5 . If fp has at least one real-vertex then x ≥ 3
5 > 2

5 .
Hence, since the charge excess of fp is larger than 2

5 , the idea is to fill the 2
5

charge deficit of t by moving an equivalent amount of charge from fp to t. We
say that t demands from fp through edge ep−1 a charge amount of 2

5 . We call
f0, . . . , fp (which is a path in the dual of Γ ) the demand path for t. Therefore,
for each 1-real triangle t of Γ whose demand path ends at a face f = fp, we
decrease ch′(f) by 2

5 and increase ch′(t) from 0 to 2
5 . Note that f cannot be a

0-real triangle-neighboring face. Indeed, f is not a triangle, and if f is a 2-real
quadrilateral then its 0-real edge is shared either with a 0-real quadrilateral or
directly with the 1-real triangle t. It follows that the set of faces whose charge is



affected by fixing 1-real triangles does not intersect with the set of faces whose
charge is affected by fixing 0-real triangles.

Due to the considerations above, after we have fixed all 1-real triangles, we
may have problems only if multiple 1-real triangles demanded from the same face
f . In this case, f might no longer satisfy (C1). In the remainder of the proof, we
analyze which types of faces may be in this situation and, if so, we prove how
to fix their charge.

Fixing faces that received multiple demands from 1-real triangles. Let f be a
face of Γ of degree larger than three that received multiple demands from 1-real
triangles. This is possible only if f has more than one 0-real edge, hence we can
exclude that f is a 2-real quadrilateral. Note that, by Lemma 2(c), each face
of Γ contains at most three real-vertices. If degΓ (f) ≥ 7 then f still satisfies
(C1) even if it received a demand through each of its degΓ (f) edges when fixing
1-real triangles. Indeed, in the worst case, the new charge of f is ch′(f) =
degΓ (f) + degrΓ (f) − 4 − 2

5 degΓ (f) = 3
5 degΓ (f) + degrΓ (f) − 4 ≥ 2

5 deg
r
Γ (f)

(because degΓ (f) ≥ 7). The same happens if degΓ (f) ≥ 5 and degrΓ (f) ≥ 1 (i.e.,
f has at least one real-vertex). Indeed, in this case, the number of 0-real edges of
f is at most degcΓ (f)−1 = degΓ (f)−degrΓ −1, so f received at most this number
of demands from 1-real triangles. Hence, in the worst case, the new charge of f
is ch′(f) = degΓ (f) + degrΓ (f) − 4 − 2

5 (degΓ (f) − degrΓ (f) − 1) ≥ 3
5 degΓ (f) +

7
5 deg

r
Γ (f) − 18

5 ≥ 7
5 deg

r
Γ (f) − 3

5 ≥ 2
5 deg

r
Γ (f) + degrΓ (f) − 3

5 ≥ 2
5 deg

r
Γ (f). It

follows that the only faces that may have received multiple demands from 1-real
triangles and that (after we have fixed all 1-real triangles) no longer satisfy (C1)
are the 1-real quadrilaterals, the 0-real pentagons, and the 0-real hexagons. Each
face f of one of these types has at least two adjacent 0-real edges. If f no longer
satisfies (C1), we show how to find extra charges that can be moved from some
suitable faces with charge excess towards f , so to compensate the charge deficit
of f . To this aim, we first prove the following claim; refer to Fig. 7.

Claim. Let f be a face of Γ and let e1, e2, e3, e4 be consecutive edges on the
boundary of f for which a demand is made through both e2 and e3. Let t1 be
the 1-real triangle that demanded from f through e2 and let v1 = e1 ∩ e3 be the
real-vertex of t1. Analogously, let t2 be the 1-real triangle that demanded from
f through e3 and let v2 = e2 ∩ e4 be the real-vertex of t2. Then there is a curve
C that begins in f , leaves f through the crossing-vertex common to e2 and e3,
passes through a sequence of zero or more 1-real triangles and 1-real edges, and
ends in a face f∗ that is either a 2-real triangle containing v1 and v2 or a 2-real
quadrilateral containing only one of v1 and v2.

Proof: Observe that the closed region∆123 bounded by e1, e2, e3 does not contain
any vertex of G other than v1 since if it did, then t1 would be making a demand
from some face other than f . Similarly, the closed region ∆234 bounded by e2,
e3, e4 contains no vertices of G.

We can construct a curve C that begins in f , passes through the crossing-
vertex z of Γ common to e2 and e3, and then enters the face f ′ opposite f at z.
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Fig. 7. A supporting face f∗ for a face f that receives charge demands through two
consecutive 0-real edges of its boundary (e2 and e3 in the figure).

From the interior of f ′ the curve C then crosses a sequence of zero or more 1-real
edges incident to v2 and passes through zero or more 1-real triangles that contain
v2 until reaching some face f∗ that contains v2 and is not a 1-real triangle. One
of the following must occur:
1. The face f∗ contains v1 (see Fig. 7(c)). In this case Lemma 2(a) implies that

f∗ also contains the 2-real edge v1v2. The crossing-minimality of Γ implies
that f∗ is a 2-real triangle that contains v1 and v2. (Otherwise e3 has more
than one crossing on the boundary of f∗ and could be rerouted to avoid all
but one of these crossings.)

2. The face f∗ has degree larger than three (see Fig. 7(d)). Then f∗ contains
an edge e of Γ that is not incident to v1 and e crosses e3. No endpoint of e
is in ∆123, e does not cross e2, and since Γ is simple, e has only one crossing
with e3, so e must cross e1. Since e3 already crosses e2 and e4, this implies
that e has no additional crossings. Therefore one end-vertex v of e belongs
to f∗. By Lemma 2(a), the edge v2v is on f∗. The crossing minimality of Γ
then implies that f∗ is a 2-real quadrilateral that contains v2.

This completes the proof of the claim. ■

Let f be a 1-real quadrilateral, a 0-real pentagon, or 0-real hexagon with
edges e1, e2, e3, e4 that satisfy the conditions of the claim and let f∗ be the face



whose existence is established by the claim. In each such case, we move a charge
of 1

5 from f∗ to f . Based on the claim, there are two cases to consider:

1. The face f∗ is a 2-real triangle that contains v1 and v2 (see Fig. 7(c)).
Let x be the crossing-vertex of f∗. Then the face g that shares x with f∗

but has no edge in common with f∗ is either a 0-real quadrilateral or it
coincides with f . In particular, g is not a 0-real triangle, which implies that
ch′(f∗) was not modified when fixing 0-real triangles. Therefore ch′(f∗) = 1
immediately after fixing 0-real triangles. The charge on 2-real triangles is
never modified when fixing 1-real triangles, hence ch′(f∗) = 1 even after
fixing all 1-triangles. Since we reduce the charge of f∗ by 1

5 and increase the
charge of f by 1

5 , we can think of this charge travelling along the suffix of
the demand path t1 ⇝ f that begins at g; we also say that the charge leaks
out of f∗ through x.
We show that charge leaks out of f∗ through x at most once. This is obviously
the case if f∗ and f share the vertex x = z (i.e., g = f). The only other
possibility is that the charge leaks out of f∗ into the 0-real quadrilateral g
that is part of another demand path t ⇝ f ′′, with t ̸= t1. Let e and e′ be
the two edges of g other than e1 and e3. Then t is the 1-real triangle that
contains v2 and whose 1-real edges are portions of e and e′. Each of e and
e′ crosses e1 and e3. Possibly e2 ∈ {e, e′} but we can assume without loss of
generality that e ̸= e2. Therefore the edge e3 crosses e2, e4, and e, for a total
of at least 3 crossings. Hence, neither e nor e′ is involved in any additional
crossings, which implies that the face next to g on the demand path t⇝ f ′′

contains end-vertices of e and e′, i.e., this face coincides with f ′′. Hence,
since Γ is simple (which excludes that e and e′ cross), degrΓ (f

′′) ≥ 2. It
follows that f ′′ is neither a 1-real quadrilateral, nor a 0-real pentagon, nor
a 0-real hexagon. Since the charge that leaks out of f∗ through x is always
left at a 1-real quadrilateral, or at a 0-real pentagon, or at a 0-real hexagon,
we conclude that charge leaks out of f∗ at x at most once.

2. The face f∗ is a 2-real quadrilateral (see Fig. 7(d)). In this case, f∗ has only
one 0-real edge, shared with a 0-real quadrilateral. Again, this implies that
ch′(f∗) was not modified when fixing of 0-real triangles. Hence, immediately
after fixing 0-real triangles we have ch′(f∗) = 2. Since we reduce ch′(f∗)
by 1

5 and increase ch′(f) by 1
5 , we can again think of this as a charge of 1

5
leaking from f∗ through a 0-real vertex x of f∗ and then travelling down a
suffix of the demand path t1 ⇝ f . With the same reasoning as above, this
can happen at most once for each of the two 0-real vertices of f∗. Therefore,
the total charge that leaves through these two vertices of f∗ is at most 2

5 .

To summarize the discussion above, each face f∗ can give a charge of 1
5 to at

most another face f , and after that it still satisfies (C1). In the following we call
f∗ a supporting face. To complete the proof, we have to show that if f is either a
1-real quadrilateral, or a 0-real pentagon, or a 0-real hexagon, and if f received
multiple demands from 1-real triangles, then f always finds a suitable number of
supporting faces to satisfy (C1). We analyze separately the three different types
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Fig. 8. A supporting face f∗ supports at most one face f .

of categories for f , and assume that f received more than one demand from
some 1-real triangles.

– If f is a 1-real quadrilateral, then it received exactly two demands of 2
5 ,

through its two consecutive 0-real edges. In this case, a charge of 1
5 leaks

into f from one supporting face. Hence we have ch′(f) ≥ 1+ 1
5 − 2 · 25 = 2

5 =
2
5 deg

r
Γ (f), that is f satisfies (C1).

– If f is a 0-real pentagon, the following cases are possible:
• f received exactly two demands. We have ch′(f) = 1− 2 · 2

5 = 1
5 > 0 =

2
5 deg

r
Γ (f), thus f satisfies (C1) without needing supporting faces.

• f received exactly three demands. Two of these demands necessarily
occur through two consecutive edges of f , so a charge of at least 1

5 leaks
into f from a supporting face. Therefore ch′(f) = 1 + 1

5 − 3 · 2
5 = 0 =

2
5 deg

r
Γ (f), that is f satisfies (C1).

• f received exactly four demands. There are three pairs of consecutive
edges of f at which the demands occur, so a total charge of 3

5 leaks into
f from three supporting faces. Therefore ch′(f) = 1 + 3

5 − 4 · 2
5 = 0 =

2
5 deg

r
Γ (f), that is f satisfies (C1).

• f received exactly five demands. There are five pairs of consecutive edges
at which the demands occur, so a total charge of 5

5 = 1 leaks into f from
five supporting faces. Therefore ch′(f) = 1 + 1− 5 · 2

5 = 0 = 2
5 deg

r
Γ (f),

that is f satisfies (C1).
– If f is a 0-real hexagon, we have two cases. If f received at most five demands,

then ch′(f) ≥ 2−5 · 25 = 0 = 2
5 deg

r
Γ (f). Otherwise, a total charge of at least

6
5 leaks into f from six supporting faces, thus we have ch′(f) = 2+ 6

5 −6 · 25 =
4
5 > 0 = 2

5 deg
r
Γ (f). Hence, in both cases f satisfies (C1).

In conclusion, at the end of the discharging process, the new function ch′(·)
satisfies (C1) for all faces of Γ , and the total charge is the same as the initial
total charge, that is, ch(·) satisfies (C2). This completes the proof. ⊓⊔

Theorem 5. Any n-vertex min-2-planar drawing has at most 6
5 (n − 2) heavy

edges. Further, there exist min-2-planar drawings with n−O(1) heavy edges.



Proof. We apply a simplified version of the charging technique as in Theorem 4,
to achieve the number of heavy edges. Here is a sketch of the proof. From G with
a corresponding drawing Γ , we derive graph G∗ with drawing Γ ∗ with the same
number of vertices and the same heavy edges crossing the same edges as in Γ ,
and which induces a 1-planar triangulation when the heavy edges being removed.
We observe that this triangulation contains only 2-real and 3-real triangles, to
which we give, as before, 1 unit or 2 units of charge, respectively, for a total of
4n− 8. We distribute the charge of those faces to the traversing segments of the
heavy edges such that each heavy edge receives at least 10

3 charge. From this,
we can conclude an upper bound of 6

5 (n− 2) heavy edges.
More formally, letG be any min-2-planar graph with a corresponding drawing

Γ with the maximum number of heavy edges. Note that all heavy edges in Γ
have at least three crossings with light edges. From Γ , we derive a graph G− and
drawing Γ− by removing all the heavy edges in Γ . Then we remove all light edges
that have two crossings in Γ−. Note that the edges that have been originally
crossed the heavy edges will not be removed during this phase. The new drawing
Γ ′ is 1-planar. All the faces of Γ ′ describe cyclic sequences of real vertices and
crossing-vertices, and in each sequence we do not have two subsequent crossing-
vertices, as this would mean two crossings on a light edge.

Claim. Γ ′ can be extended by additional light edges to a Γ+ such that all faces
are triangles and Γ ∗ achieved by inserting the heavy edges is still min-2-planar.

Proof: This insertion of extra edges for triangulation can be done using similar
techniques as in Lemma 1. If u and v are vertices of two distinct 1-real edges
with a crossing c, then we can add an edge between u and v having at most
two crossings with heavy edges e and e′ (see Fig. 9(a)). So we assure that faces
f with degΓ+(f) ≥ 4 have only real vertices. We can now reduce inductively
degΓ+(f). If f is not traversed by a heavy edge, we can triangulate it instantly.
If f is traversed by a heavy edge e which is incident to a vertex u of f and crosses
the boundary of f through the edge vv′, we can add an edge uv which has at
most one crossing with a heavy edge e′ (see Fig. 9(b)). Note that instead of uv
we can choose uv′, if u and v are already adjacent. Assume now that no heavy
edge e traversing f is incident to any vertex of f . Let u, u′, v, v′ be vertices of f
and uu′, vv′ the edges which are crossed by e. Then we can add the edge uv as
it has at most two crossings with heavy edges e′, e′′ (see Fig. 9(c)). Note again
that instead of uv we may choose u′v′, if u and v are already adjacent. If u′ and
v′ are also adjacent, this implies degΓ+(f) = 4. In this case there are at most
four heavy edges traversing f and all their combinations allow adding an edge
between two vertices of f . ■

Since each edge in Γ+ has at most one crossing, there are no 0-real triangles
nor 1-real triangles in Γ+. See Fig. 10(a) for an illustration of a heavy edge
traversing such a graph. For this reason we show properties of 2-real and 3-real
triangles.

Claim. Let f be a 2-real triangle in Γ+. Then the following holds: (i) If f is a
start face for a heavy edge e, it is the only heavy edge traversing f . (ii) At most



two heavy edges traverse f . (iii) If two heavy edges traverse f , then the face f ′

that shares only a crossing-vertex with f is not traversed by a heavy edge.

Proof: (i) This is clear as one edge of f has already 2 crossings and a heavy edge
through the other edges of f would imply two crossing heavy edges. (ii) Because
of (i) we know that this is true, if a heavy edge starts at f . Otherwise three or
more traversing heavy edges would imply at least six extra crossings with the
border of f and this contradicts that Γ ∗ is min-2-planar. (iii) Both 1-real edges
of f are also edges of f ′. Because of (i) both heavy edges do not start at f and
therefore the border of f is crossed four times. So the 1-real edges of f already
have each two crossings and no heavy edge can traverse f ′ (see Fig. 10(b)). ■

Claim. Let f be a 3-real triangle in Γ+. Then the following holds: (i) If f is a
start face for a heavy edge e, there is at most one other heavy edge traversing
f . (ii) At most three heavy edges traverse f .

Proof: (i) Let e′ be the edge of f which is crossed by e and observe that e divides
the triangle in two parts, so that all other heavy edges must also cross e′. So the
maximal number of crossing of e′ limits the number of heavy edges traversing
f to two. (ii) Note that the border of f can have at most six crossings. If no
traversing heavy edge starts at f , this implies at most three traversing heavy
edges. Otherwise we know because of (i) that the result is true. ■

Now we apply the charging technique from before. In total, we distribute
4n − 8 charge such that the 2-real triangles receive 1 charge and the 3-real
triangles receive 2 charge. We also move 1 charge from a 2-real triangle f ′ to
the 2-real triangle f that shares only the crossing-vertex with f ′, if f ′ is not
traversed by a heavy edge. Then we assign the charge to the corresponding
parts of the heavy edges which traverse those triangles. Because of the above
statements we know that we can assign to each start segment 1 charge and to
each intermediate segment 2

3 without having a face with negative charge. In
total, each heavy edge receives at least 10

3 charge, as it has two start segments
and at least two intermediate segments. Hence overall, there cannot be more
than 4·3

10 (n− 2) = 6
5 (n− 2) heavy edges.

(a) (b) (c)

Fig. 9. The triangulation in the proof of Theorem 5.



For the lower bound, we refer to the middle part of Fig. 11. ⊓⊔

Theorem 6. Any min-3-planar graph with n vertices has at most 6n−12 edges.

Proof. As in the proof of Theorem 4 we can assume to restrict to maximally-
dense crossings-minimal bundle-proper min-3-planar pairs (G,Γ ) with |V (G)| =
n vertices, and we will use a discharging technique to prove the statement. Our
discharging function ch′(·) is similar to that in [1], where the same bound for
4-planar graphs was proven, but the details differ, as here edges with more
than four crossings can exist. We can assume that Γ is 2-connected and hence
that the boundary of each face f of Γ is a simple cycle. Indeed, Ackerman
proved that if Γ is not 2-connected it always has no more than 6n− 12 edges [1,
Proposition 2.1]. Although Ackerman concentrates on 4-planar graphs, he does
not use this hypothesis to show this fact, thus his argument works also in our case.

We introduce the discharging steps of ch′(·) and show that all faces satisfy
(C1) and (C2) for α = 1

3 , which implies with Eq. (3) the desired bound on the
edge density. This is relatively difficult to see for 0-real pentagons, so the major
part of the proof is reserved for these. For that we distinguish different cases
depending on the structure of the graph near a 0-real pentagon.

Before we can write down the discharging function, we introduce some def-
initions. Let x be a crossing-vertex in a drawing Γ . We call the faces f and
f ′ vertex-neighbors, if both their boundaries contain x but not a common edge
e ∈ E(Γ ). Recall the definition of demand path in the proof of Theorem 4 for
1-real triangles. We naturally extend the definition of demand path for arbitrary
faces f0 through each of their 0-real edges. If f is the end of a demand path for
f0, then we say that f and f0 are demand-path-neighbors (even if no demand
is made). Note that in Section 3.2 degΓ (f) ≥ 4 was already shown for the case
that f0 is a 1-real triangle and this holds also for 0-real triangles, still using the
fact that Γ is a simple drawing and two edges cannot cross more than once.

We assign to every face f ∈ F (Γ ) the initial charge ch′0(f) = ch(f) as defined
in Eq. (1) and modify the charges by the following steps i ∈ {1, 2, 3, 4} to get

(a) (b)

Fig. 10. Heavy edges crossing 2-real and 3-real triangles. (a) f1 and f5 are start faces
for the the edge e and f2, f3, f4 intermediate faces. (b) If f is traversed by two heavy
edges, then f ′ is traversed by no heavy edges.



Fig. 11. Lower bound examples for the number of heavy edges for min-1-planar, min-
2-planar and (non-simple) min-3-planar drawings respectively. For min-1-planar draw-
ings, we show one pentagon of a planar pentagonalization with one heavy edge for each
pentagon. The bound follows from Euler’s formula. For min-2-planar drawings, we use
an almost complete hexagonalization with the indicated hexagonal tile as shown. The
hexagons contain 2 heavy edges. The bound follows from Euler’s formula since there
are approximately 2n−4

4
hexagons. The rightmost subfigure follows the construction of

Fig. 5. Note that the pattern can be repeated arbitrarily often with the poles u and v.

ch′i(f). The final charge is ch′(f) = ch′4(f). The idea is as in Section 3.2 to fix
first the charge of the 0-real and then the 1-real triangles. The last step fixes
0-real pentagons, which contribute to multiple triangles in the first step.

Step 1. Every 0-real triangle receives 1
3 from each of its demand-path-neighbors.

Step 2. If f is a face with positive charge that is not a 1-real quadrilateral, then
f gives 1

6 to each 1-real triangle that shares a 1-real edge with f . However,
if f is a 2-real triangle that shares only one of its two 1-real edges with a
1-real triangle t, then f gives 1

3 to t.
Step 3. Let t be a 1-real triangle with ch′2(t) < 1

3 charge. Then t receives 1
3 −

ch′2(t) from its demand-path-neighbor.
Step 4. Every face f distributes its (positive) excess ch′3(f)− 1

3 deg
r
Γ (f) equally

over all 0-real pentagons that are vertex-neighbors of f .

Since charge is only moved, (C2) holds for ch′(f). For the four steps we have:

Proposition 1. In any maximally-dense crossing-minimal bundle-proper min-
3-planar pair (G,Γ ) the following holds for the above charging function ch′(f):

(a) In Step 1 and Step 3 charge gets only moved through 0-real edges.
(b) In Step 2 charge gets only moved through 1-real edges.
(c) Charge gets never moved through 2-real edges.
(d) In Step 3 each 1-real triangle receives most 1

3 charge.
(e) Let f be a 1-real triangle and e a 1-real edge of the boundary of f . If e has

more than three crossings, then f receives at least 1
6 charge in Step 2.

Proof: (a) follows by the definition of a demand-path-neighbor and (b) directly
by the definition of Step 2 of ch′(·). Because of (a) and (b) charge gets never
moved through 2-real edges in Step 1-3 and this is also clear for Step 4 what



shows (c). Each 1-real triangle f has ch′0(f) = 0 and contributes no charge in
Step 1-2. Thus 1

3 − ch′2(f) ≤ 1
3 and so (d) is true. For (e) we consider the 0-real

edge e′ of the boundary of the 1-real triangle f . Since e has more than three
crossings, e′ has at most three crossings. Therefore f has a common 1-real edge
on its boundary with a 2-real triangle f ′. 2-real triangles have no 0-real edges and
therefore by applying (a) we have ch′1(f) = ch′0(f) =

1
3 > 0. So f ′ contributes

at least 1
6 in Step 2 to f . ■

We analyze the final charges ch′(f) for all faces f ∈ F (Γ ). By Lemma 2(c)
we have to consider only h-real faces for h ≤ 2 and 3-real triangles. Note that
a face contributes in Step 1-3 through each edge at most once. Also a face can
not get a deficit in Step 4, so it is enough to show ch′3(f) ≥ 1

3 deg
r
Γ (f). We use

Proposition 1(a)-(d) to receive the following results:

– Each 0-real triangle f has ch′0(f) = −1, receives 3 · 1
3 in Step 1 and does not

contribute or receive charge in Step 2-3. So ch′3(f) = 0 = 1
3 deg

r
Γ (f).

– Each 1-real triangle f has ch′3(f) =
1
3 = 1

3 deg
r
Γ (f).

– Each 2-real triangle f has ch′0(f) = 1 and contributes through one or two
edges in total at most 1

3 in Step 2. So ch′3(f) ≥ 2
3 = 1

3 deg
r
Γ (f).

– Each 3-real triangle f has ch′0(f) = 2 and contributes or receives no charge,
so ch′3(f) = 2 > 1 = 1

3 deg
r
Γ (f).

– Each 0-real quadrilateral f has ch′0(f) = 0 and contributes or receives no
charge, so ch′3(f) = 0 = 1

3 deg
r
Γ (f).

– Each 1-real quadrilateral f has ch′0(f) = 1 and contributes through each
0-real edge at most once and never through a 1-real edge, so it loses in Step
1-3 in total at most 2

3 . Therefore ch′3(f) ≥ 1
3 = 1

3 deg
r
Γ (f).

– Each 2-real quadrilateral f has ch′0(f) = 2 and contributes at most 1
3 through

its only 0-real edge and 2 · 1
6 through the 1-real edges, so it loses in Step 1-3

in total at most 2
3 . Therefore ch′3(f) ≥ 4

3 > 2
3 = 1

3 deg
r
Γ (f).

– Each 1-real pentagon f has ch′0(f) = 2 and contributes through its three
0-real edges at most 3 · 1

3 and through its two 1-real edges at most 2 · 1
6 , so

ch′3(f) ≥ 2
3 > 1

3 = 1
3 deg

r
Γ (f).

– Each 2-real pentagon f has ch′0(f) = 3 and contributes through its two 0-
real edges at most 2 · 1

3 and through its two 1-real edges at most 2 · 1
6 , so

ch′3(f) ≥ 2 > 2
3 = 1

3 deg
r
Γ (f).

– Each face f with degΓ (f) ≥ 6 has ch′0(f) = degΓ (f) − 4 + degrΓ (f) and
contributes at most 1

3 degΓ (f) charge through its degΓ (f) edges. So ch
′
3(f) ≥

2
3 degΓ (f)− 4 + degrΓ (f) ≥ degrΓ (f) ≥ 1

3 deg
r
Γ (f).

It only remains to show ch′4(f) ≥ 0 for all 0-real pentagons f . For this we
denote for i ∈ {0, 1, 2, 3, 4} by ei the edges of the boundary of f in clockwise
order and by ti (even if not a triangle) the demand-path-neighbor of f at ei.
Further we denote by fi the vertex-neighbors of f at the crossing-vertex of ei
and e(i+1) mod 5. We consider different cases for the demand-path-neighbors of
f . Because of rotation- and mirror-symmetry we can shift or negate all indices
modulo 5 without loss of generality and to ease notation we will always use fixed
indices. We distinct that more than one demand-path-neighbor of f is a 0-real



(a) (b) (c)

Fig. 12. Case 1: If e0 and e3 have exactly three crossings, then f1 is a (a) 1-real
quadrilateral or (b) a 2-real pentagon. (c) If e0 has more than three crossings, then f
receives charge from f0 and f2. (Here and in the following figures, edges that exist in
some subcases are dotted and edges with more than three crossings are bold.)

triangle (case 1 and 2), exactly one 0-real triangle (case 3 and 4) or no 0-real
triangle (case 5 and 6). Note that ch′0(f) = 1, so if f receives 2

3 or loses not
more than 1 charge then ch′4(f) ≥ 0. This is for example the case if three or
less demand-path-neighbors of f are 0-real or 1-real triangles, so we can assume
always the opposite. We use this argument repeatedly in the proof.

Case 1. The demand-path-neighbors ti and t(i+1) mod 5 are 0-real triangles. Fix
i = 1. Assume that e0 and e3 have exactly three crossings. Then f1 is a 1-real
quadrilateral or a 2-real pentagon.

– If f1 is a 1-real quadrilateral, then t4 is a 2-real quadrilateral and therefore
ch′4(f) ≥ 0, in case one of t3 and t5 is not a triangle. If both are triangles, one
of them – say without loss of generality t3 – is a 1-real triangle as otherwise
e1 and e2 would have more than three crossings (see Fig. 12(a)). This implies
that t3 receives 1

3 from the 2-real triangle f3 in Step 2 and so ch′4(f) ≥ 0.
– If f1 is a 2-real pentagon, then f0 and f2 are not both 0-real pentagons,

because then e1 and e2 would have more than three crossings (see Fig. 12(b)).
So f1 distributes its excess of at least 4

3 in Step 4 over at most two faces and
therefore ch′4(f) ≥ 0.

Assume now that without loss of generality e0 has four or more crossings (see
Fig. 12(c)). Then e1 and e2 have exactly three crossings and f0 and f2 are 2-real
quadrilaterals, which contribute each their excess of at least 2

3 to at most two
faces in Step 4. So f receives 2 · 1

3 and therefore ch′4(f) ≥ 0.

Case 2. The demand-path-neighbors ti and t(i+2) mod 5 are 0-real triangles. Fix
i = 1. Then e2 has four or more crossings and so e0 and e4 have exactly three
crossings. So f4 is a 2-real triangle and contributes in Step 2 and Step 4 in total 1

3
to f and its demand-path-neighbors. If f has four or less demand-path-neighbors
that are 0-triangles or 1-triangles, then already ch′4(f) ≥ 0.



Fig. 13. Case 2: If t1 and t3 are 0-real triangles, then f4 is a 2-real triangle. f receives
also charge from f1.

Assume that f has five such demand-path-neighbors and t0, t2, t4 are 1-real trian-
gles (see Fig. 13) as otherwise we can refer to case 1. If f1 is a 2-real quadrilateral,
then it contributes its excess of at least 2

3 to f in Step 4 and so ch′4(f) ≥ 0. If
f1 is a 1-real quadrilateral, then it has an excess of 1

3 , because it contributes
no charge in Step 1 to f2. This excess is contributed in Step 4 to only f , so
ch′4(f) ≥ 0. For degΓ (f1) ≥ 5 the excess of f1 after Step 3 is at least

degΓ (f1)− 4 +
2

3
degrΓ (f1)−

1

3
degΓ (f1) + 2 · 1

3
≥ 2

3
degΓ (fi)−

8

3
,

because f1 contributes through the 1-real edges in total at most 1
3 , it contributes

no charge to f2 and degrΓ (f1) ≥ 1. This is distributed over at most degΓ (f1)− 3
faces as f1 has at most degΓ (f1) − 1 vertex-neighbors and does not contribute
charge to f0 and t2. For degΓ (f1) ≥ 5 the equation

2
3 degΓ (f1)−

8
3

degΓ (f1)− 3
≥ 1

3

holds. This implies ch′4(f) ≥ 0.

Case 3. The demand-path-neighbor ti is a 0-real triangle and the demand-path-
neighbor tj , j ∈ {(i+1) mod 5, (i−1) mod 5} is a 1-real triangle with no 0-real
quadrilaterals in its demand path. Fix i = 1 and j = 2.

– Assume e0 has more than three crossings. So e2 has exactly three cross-
ings. Then f2 is a 2-real triangle contributing 1

3 to f and its demand-path-
neighbors (see Fig. 14(a)). So we can assume that all demand-path-neighbors
of f are 0-real or 1-real triangles (otherwise ch′4(f) ≥ 0) and t0, t2, t3, t4 are
1-real triangles (otherwise we can refer to case 1-2). Note that if the de-
mand path of t4 contains no 0-real quadrilateral, then f3 is a 2-real triangle
and therefore ch′4(f) ≥ 0. If it contains one or more 0-real quadrilaterals,



(a) (b)

Fig. 14. Case 3: (a) If e0 has more than three crossings, then f2 contributes charge
to t2 and t3. Also charge is moved to t4 and from f0 to f . (b) If e0 has exactly three
crossings, then f1 contributes charge to f and t2. If this is not

2
3
, then charge is moved

to t3 or from f2 to f .

then t4 receives at least 1
6 by Proposition 1(e). Also f receives at least 1

6
from f0, as we can see with the following argument: If f0 is a 1-real quadri-
lateral, then t0 receives 1

3 charge from a 2-real triangle in Step 2. If f0 is
a 2-real quadrilateral, then f receives the excess of f0 in Step 4, which is
at least 2

3 . If f0 has more than four vertices, then it distributes not less

than degΓ (f0) − 3 − degΓ (f0)
3 = 2

3 degΓ (f0) − 3 over at most degΓ (f0) − 3
vertex-neighbors and so f receives at least 1

6 charge in Step 4. So in total
ch′4(f) ≥ 0.

– Assume e0 has exactly three crossings. Then f1 is a 2-real quadrilateral,
which contributes 1

6 in Step 2 to t2 and has an excess of at least 2
3 after Step

3, which is distributed over at most two faces in Step 4 (see Fig. 14(b)). If
there is a demand-path-neighbor of f , which is not a 0-real or 1-real triangle,
then ch′4(f) ≥ 0. So we assume that t0, t3, t4 are 1-real triangles (otherwise
we can refer to case 1 or 2).
If now f0 is not a 0-real pentagon, then f1 contributes its excess in Step 4
only to f and ch′4(f) ≥ 0 follows. If f0 is a 0-real pentagon, then e2 has
more than three crossings. So if the demand path of t3 contains one or more
0-real quadrilaterals, then t3 receives at least 1

6 in by Proposition 1(e) and
ch′4(f) ≥ 0. If the demand path of t3 contains no 0-real quadrilaterals, then
f2 is a 2-real triangle that contributes 1

6 both to t2 and t3 and so ch′4(f) ≥ 0.

Case 4. The demand-path-neighbor ti is a 0-real triangle and the demand-path-
neighbor tj , j ∈ {(i+ 1) mod 5, (i− 1) mod 5} is a 1-real triangle with one or
more 0-real quadrilaterals in its demand path. Fix i = 1 and j = 2.

– Assume e0 has more than three crossings. So e1 and e2 have exactly three
crossings. It follows that f0 is a 2-real quadrilateral with an excess of at least



(a) (b) (c)

Fig. 15. Case 4: (a) If e0 has more than three crossings, then f0 contributes charge to f
and we can refer to case 1-3. (b) The situation for the subcase that e0 has exactly three
crossings and t0 is a 1-real triangle. (c) Situation that e0 has exactly three crossings
and t0 is not a 1-triangle.

2
3 after Step 3, so it contributes at least 1

3 to f in Step 4 (see Fig. 15(a)). So
if four or less demand-path-neighbors of f are 0-real or 1-real triangles, then
ch′4(f) ≥ 0. Otherwise we assume that all demand-path-neighbors except t1
are 1-real triangles as with another 0-real triangle we can refer to case 1 or 2.
But then t0 is a 1-real triangle without a 0-real quadrilateral in its demand
path and we can refer to case 3.

– Assume e0 has exactly three crossings and t0 is a 1-real triangle. If the
demand path of t0 has no 0-real quadrilaterals, then we refer to case 3. Oth-
erwise e1 has more than three crossings and so by applying Proposition 1(e)
both t0 and t2 receive each 1

6 charge in Step 2 (see Fig. 15(b)). So if not all
demand-path-neighbors of f are 0-real or 1-real triangles, then ch′4(f) ≥ 0.
So assume now the opposite and that t3 and t4 are 1-triangles (otherwise
we can refer to case 1-2). Because e0 and e2 already have three crossings, t3
and t4 have no 0-real quadrilaterals in their demand paths. So f3 is a 2-real
triangle contributing 1

6 to each t3 and t4. Therefore ch′4(f) ≥ 0.

– Assume e0 has exactly three crossings and t0 is not a 1-real triangle. Then
we can assume that t0 is also not a 0-real triangle (otherwise we can refer
to case 1) and that t3 and t4 are 1-real triangles (otherwise we can refer to
case 2). If then the demand path of t3 contains no 0-real quadrilateral, it
follows that f3 is a 2-real triangle contributing 1

6 each to t3 and t4 and so
ch′4(f) ≥ 0.
If otherwise the demand path of t3 contains a 0-real quadrilateral, by Propo-
sition 1(e) t3 receives 1

6 charge in Step 2 (see Fig. 15(c)). We now consider
different cases for f1. If f1 is a 1-real quadrilateral, then t2 receives 1

3 from a
2-real triangle in Step 2 and so ch′4(f) ≥ 0. If otherwise degΓ (f1) ≥ 5, then

the excess of f1 after Step 3 is at least degΓ (f)−3− degΓ (f)
3 = 2

3 degΓ (f)−3
and this is distributed in Step 4 over at most degΓ (f)− 3 vertex-neighbors.
So f receives at least 1

6 from f1 and so ch′4(f0) ≥ 0.



Fig. 16. Case 5: The situation if only t2 and t3 have a 0-real quadrilateral in their
demand paths.

Case 5. Exactly four demand-path-neighbors of f are 1-real triangles and no
demand-path-neighbor is a 0-real triangle. Fix the indices so that ti, i ∈ {1, 2, 3, 4}
are 1-real triangles. If the demand paths of t2 and t3 contain no 0-real quadri-
laterals, then f2 is a 2-real triangle contributing 1

6 each to t2 and t3 and this
implies ch′4(f) ≥ 0. So assume without loss of generality that the demand path
of t2 contains a 0-real quadrilateral. If the demand path of t4 contains at least
one 0-real quadrilateral, then e3 has more than three crossings and it follows by
Proposition 1(e) that t2 and t4 both receive 1

6 in Step 2 and therefore ch′4(f) ≥ 0.
If otherwise the demand path of t4 contains no 0-real quadrilaterals, then we can
assume that the demand path of t3 does so, because otherwise f3 is a 2-real tri-
angle, what implies ch′4(f) ≥ 0. If now the demand path of t1 contains a 0-real
quadrilateral we know by Proposition 1(e) that t1 and t3 both receive 1

6 in Step
2 and therefore ch′4(f) ≥ 0.
So assume that the demand paths of t1 and t4 contain no 0-real quadrilaterals
(see Fig. 16). If e1 has exactly three crossings, then f0 is 2-real triangle, which
contributes 1

3 to t1 and so ch′4(f) ≥ 0. If e4 has exactly three crossings, then with
the same argument f4 contributes 1

3 to t4 and so ch′4(f) ≥ 0. If both e1 and e4
have more than three crossings, t2 and t3 receive by applying Proposition 1(e)
each 1

6 charge in Step 3 and so ch′4(f) ≥ 0.

Case 6. All demand-path-neighbors of f are 1-real triangles. If the demand paths
of only one demand-path-neighbor ti or two demand-path-neighbors ti, t(i+1) mod 5

contain 0-real quadrilaterals, then f(i+2) mod 5 and f(i+3) mod 5 are 2-real trian-
gles and so ch′4(f) ≥ 0. So we assume without loss of generality that the demand
paths of t1 and t3 contain 0-real quadrilaterals.
Then e2 has more than three crossings and both t1 and t3 receive 1

6 in Step 2
by applying Proposition 1(e). So if the demand paths of t0 and t4 contain no
0-real quadrilaterals and therefore f4 is a 2-real triangle, it follows ch′4(f) ≥ 0.
Thus assume without loss of generality that the demand path of t4 contains a
0-real quadrilateral (see Fig. 17(a)). Then e0 has more than three crossings and
t4 receives at least 1

6 in Step 2 by applying Proposition 1(e).



(a) (b)

Fig. 17. Case 6: (a) The situation if only t1, t3 and t4 have a 0-real quadrilateral
in their demand paths. (b) Focus on f3 and its renamed neighbors with the further
assumption that f2 and f4 are 1-real triangles. Here we show the example that f3 is a
0-real pentagon.

Note that the demand paths of t3 and t4 can not contain more than one 0-real
quadrilateral and if one of f2 and f4 is a 2-real quadrilateral, it contributes its
excess of at least 2

3 to f in Step 4 and so ch′4(f) ≥ 0. So we can assume the
opposite. We consider different cases for f3 (see Fig. 17(b) for the example f3 is
a 0-real pentagon):

– f3 is a 0-real quadrilateral: Then f2 and f4 are 1-real triangles and therefore
t3 and t4 receive both 1

6 from a 2-real triangle in Step 2. Further they receive
also 1

6 from a 2-real quadrilateral in Step 2 and so ch′4(f) ≥ 0.

– f3 is a 1-real quadrilateral: Then t3 and t4 receive both 1
3 charge in Step 2

from a 2-real triangle and so ch′4(f) ≥ 0.

– degΓ (f3) ≥ 5: We rename for this purpose the faces in the neighborhood
of f̃ := f3 so that we denote for i ∈ {0, 1, . . . ,degΓ (f̃)} by ẽi the edges of
the boundary of f̃ in clockwise order and we introduce further ẽ1 so that
ẽ1 = e3, t̃1 := f4 and so on. The demand-path-neighbors t̃1 and t̃2 are 1-real
triangles, which receive both 1

6 from a 2-real triangle. If further t̃3 is a 1-real
triangle, then it receives (together with t̃4, if t̃4 is a 1-real triangle) 1

3 charge
from a 2-real triangle. The same is true for t̃0 (together with t̃degΓ (f3)−1). So
the excess of f3 is at least

degΓ (f3)− 4 +
2

3
degrΓ (f3)−

1

3
degΓ (f3) + 2 · 1

6
+ 2 · 1

3
≥ 2

3
degΓ (f3)− 3

and this is distributed over at at most degΓ (f3)−4 faces. So for degΓ (f3) ≥ 5
the face f3 contributes at least 1

6 to each of its vertex-neighbors and this
implies with the other charges ch′4(f) ≥ 0.



Summary Since we have shown for all 0-real pentagons f that we have ch′(f) ≥ 0
in all cases, we know that (C1) holds for all faces w.r.t. α = 1

3 . Together with
Eq. (3) and the observation that (C2) is true, Theorem 6 follows. ⊓⊔

Theorem 7. Any n-vertex min-3-planar drawing has at most 2(n − 2) heavy
edges. Further, there exist min-3-planar drawings with 6

5n−O(1) heavy edges.

Proof. We apply a similar charging technique as in Theorem 5, to achieve a
bound for the number of heavy edges. Here is a sketch of the proof. From G
with a corresponding drawing Γ , we derive graph G∗ with drawing Γ ∗ with
the same number of vertices and the same heavy edges crossing the same edges
as in Γ . With the heavy edges being removed, Γ ∗ induces a 2-planar drawing.
Different than before, 0-real and 1-real faces might occur, and we also cannot
guarantee the existence of a triangulation. But fortunately, we can redistribute
our total charge of 4n− 8 similar as before, such that each heavy edge receives
charge 2 and that implies the claimed upper bound.

More formally, letG be any min-3-planar graph with a corresponding drawing
Γ with the maximum number of heavy edges. Note that all heavy edges in Γ
have at least four crossings with light edges. From Γ , we derive a graph G− and
drawing Γ− by removing all the heavy edges in Γ . Further we remove all light
edges that have three crossings in Γ− which is 2-planar by construction. Note
that the edges that have been originally crossed by the heavy edges will not be
removed during this phase.

The next claim describes how to construct Γ ∗ from the drawing Γ−. We
apply the operation whenever it is possible.

Claim. Let Γ+ be the drawing obtained from Γ− by adding the heavy edges.
If there exist two light edges u1v1, u2v2 with endpoints u1, u2, v1, v2 having a
crossing x and if additionally the two edges have in total c ≥ 1 crossings in Γ+

between u1 and x and between u2 and x, we can extend Γ− by the light edge
v1v2 such that it forms a 2-triangle v1v2x, if it does not exist. Then the achieved
graph G∗ with the drawing Γ ∗ is still min-2-planar and the 2-real triangle v1v2x
is crossed by at most one heavy edge if c = 3 and by no heavy edge if c ≥ 4.

Proof: Let c ≥ 1 the number of crossings as defined in the claim. Note that both
u1v1 and u2v2 have also the crossing x. Therefore the two edges might have in
total 6 − 2 − c ≤ 3 possible crossings at the 2-real triangle v1v2x. Since each
heavy edge that crosses v1v2x must cross one of these edges, there can be at
most three such heavy edges. Hence v1v2 is crossed at most three times and Γ ∗

is min-3-planar. For c = 3 respectively c = 4 the same argument leads to one
respectively zero heavy edges crossing the 2-real triangle v1v2x. ■

As before, we distinguish k-real faces in Γ ∗, where k denotes the number of
real vertices in the corresponding face. According to the formula from Eq. (1), we
assign charges to the faces. Our final goal is to distribute 1

4 charge to each start
segment of a heavy edge and 1

2 charge to each intermediate segment. Furthermore
we have to ensure that the charge of each face is non-negative.



In the following, we discuss different faces: Note that we will move charges
from one face f to another f ′, if necessary. This will happen at crossings where
f and f ′ do not have adjacent sides but they are opposite at the crossings. Since
we ensure that f will always be a 2-real triangle, it has a unique crossing-vertex
and therefore it will not lose charge more than once. This general strategy will
ensure the correctness of the transfer of the charges. There will be one subcase
deviating from this strategy that will be discussed separately.

– 0-real triangles t: We start with an initial charge of −1. Since each of the
three light edges is crossed twice we know there are three 2-real triangles
adjacent to the crossing-vertices of t. These triangles are crossed in total by
at most three heavy edges. So they can give together 3

2 charge to t and keep
3
2 for their three possible intermediate segments of heavy edges. Hence the
final charge of t is non-negative. Even if the 0-real triangle is traversed by
a heavy edge (note that there can be only one), the corresponding segment
can receive the remaining 1

2 charge.
– 1-real triangles t: We start with an initial charge of 0. Let u be the single

vertex adjacent to the 1-real triangle, and let e be the unique edge at the
triangle which is not incident to u. Let c1 and c2 be the crossings of the edge
e at the boundary of the triangle. Call the endpoints of the edge e x and y.
The vertices u, c1 and x and also the vertices u, c2 and y form two 2-real
triangles t1 and t2. Assume first that t has a heavy edge e′ incident to u.
Then no heavy edges cross t1 and t2, because e, uc1 and uc2 cannot have
another heavy edge crossing.

Here is the critical case for the transfer of the charge: We can charge the
start segment of e′ by 1

4 from one of the two 2-triangles that are opposite to
t at crossing c1 respectively c2, if not both are crossed twice, as then it has 1

2
charge left for its one crossing. If both such 2-real triangles are crossed twice,
we know that the face f ′ that is opposite to c1 and c2 at t1 respectively t2
has at least degΓ∗ ≥ 4 and two real vertices. We will never move charge to
this face and therefore t1 and t2 can safely charge the start segment of e′ by
1
4 .
Assume now that exactly one heavy edge e′ has two crossings with t. Then
one of the faces opposite at c1 or c2 is a 2-real triangle, that can give 1

2
charge to t. This is true as we know from the above claim that the 2-real
triangles exist and if both would have two crossing heavy edges, there would
be two crossing edges with more than three crossings which is not allowed.
In the last case, we have two heavy edges crossing the 1-real triangle t twice.
No matter if one of the heavy edges crosses e or not, we can guarantee the
existence of a 2-real triangle t′, which is opposite to t at c1 or c2 and which
is traversed by no heavy edge. Since this 2-real triangle t′ has no heavy edge,
we can safely move 1 = 2 · 1

2 charge to the 1-real triangle, in particular to
the two segments of the heavy edges crossing the 1-real triangle t.

– 2-real triangles t with crossing c: We start with an initial charge of 1, which
means that we have enough charge available, if there are at most 2 heavy



edges that cross. If three heavy edges cross, then there is a 2-real triangle t′

opposite to t at crossing c. Note that t′ is crossed by at most one heavy edge.
Again we can move 1

2 charge from t′ to the third heavy edge that crosses
t. Note that t′ has still enough charge that might be assigned to the single
heavy edge of t′ if it exists.

– 3-real triangles t: We start with an initial charge of 2, which means that we
have enough charge for 4 possible heavy edges. Observe that we can have at
most 4 heavy edges which possibly cross t. Hence we do not need to transfer
any extra charge from somewhere else.

– 0-real quadrilaterals q: We start with an initial charge of 0, which means
that we need to collect either 1

2 or 1 charge depending on the number of
possible crossing heavy edges. In both cases (1 or 2 crossing edges), we can
argue that there is at least one of the four possible 2-real triangles adjacent
to the four crossings of q that is empty and can give its charge to the crossing
heavy edges.

– 1-real quadrilaterals q: We start with an initial charge of 1, so we only need
additional charge for the case of 3 crossing heavy edges. Note that more
heavy edges can not cross q. In this critical case, all 2-real triangles adjacent
to the three crossings of q are empty and therefore one can give its charge
to the third heavy edge of the 1-real quadrilateral.

– 0-real pentagons: We start with an initial charge of 1, which means that we
have enough charge for 2 possible heavy edges. Observe that we can have at
most 2 heavy edges which possibly cross.

For larger faces, it is sufficient to argue only about the number of crossings:
For 2-real quadrilaterals, 1-real pentagons and 0-real hexagons the number of
possible crossings on their boundary is not more than a quarter of their charge.
This allows us to move 1

4 to the start segments and 1
2 to the intermediate seg-

ments as they correspond to one respectively two crossings and we avoid therefore
negative charge. This holds also for faces with more real vertices or higher degree,
by the following argument. Replacing one crossing by a real vertex increases the
charge of a face by 1, while the number of possible crossings increases also by 1
and therefore the required charge increases by only 1

4 . Increasing the degree of
a face by 1 increases the charge by 1, while two more crossings are possible. So
we can charge the heavy edges that make those additional crossings.

This gives in total 2 · 1
4 + 3 · 1

2 = 2 charge, as we have 2 start segments and
at least 3 intermediate segments per heavy edge. From the charge of 2 for each

heavy edge, we conclude that we have at most 4(n−2)
2 = 2(n− 2) heavy edges.

For the lower bound, we refer to the right part of Fig. 11, where we have 6
heavy edges for blocks of 6 vertices (8 vertices from where u and v are removed).
Note that this construction can be repeated between the poles u and v similarly
as in Fig. 5. ⊓⊔



A.2 Details for Section 4

Theorem 9. 2-planar graphs are a proper subset of min-2-planar graphs, and
there are optimal min-2-planar graphs that are not optimal 2-planar.

Proof. We first observe that there exist non-optimal min-2-planar graphs that
are not 2-planar. For example, K5,5 is not 2-planar [7], while Fig. 4(a) illustrates
a min-2-planar drawing of K5,5, where black edges have no crossings, orange
edges have 1 crossing, blue edges have 2 crossings, green edges have 3 crossings,
and the red edge has 4 crossings. In the following, we show how to construct
optimal n-vertex min-2-planar graphs that are not 2-planar.

Let G be the truncated icosahedral graph and let Γ be a planar drawing of G,
as depicted in Fig. 4(b). This drawing has 12 pentagonal faces, 20 hexagonal
faces, 60 vertices and 90 edges. We enrich Γ by adding 5 edges inside each
pentagonal face and 7 edges inside each hexagonal face. Denote the obtained
graph and the obtained drawing as G′ and Γ ′, respectively. Γ ′ is depicted in
Fig. 4(c), where the edges inside pentagonal faces are colored orange and the
edges inside hexagonal faces are colored blue. More precisely, for each pentagonal
face we add an edge between each pair of vertices of the face that are not
connected. For each hexagonal face f , we add 7 edges as follows; refer to Fig. 4(c)
for an illustration, where the vertices of f are denoted as u, v, w, x, y, and z . We
add an edge between each pair of vertices having distance two on the boundary of
f . Additionally, we arbitrarily choose two vertices having the maximum distance
on the boundary of f (w and z in Fig. 4(c)) and we add an edge between them,
which we call the diagonal of f . Note that the end-vertices of the diagonal of f
have degree 5 in f . All the diagonals are dashed in Fig. 4(c).

Observe that: (i) G′ has n = 60 vertices and m = 90 + 12 · 5 + 20 · 7 = 290
edges, thus m = 5n− 10; (ii) each edge of G′ added inside a pentagonal face of
Γ has two crossings in Γ ′; (iii) for each hexagonal face f of Γ , the two edges
that cross the diagonal (bold in Fig. 4(c)) have three crossings each, while the
other edges added inside f have two crossings each; (iv) no two edges with three
crossings cross each other. This implies that G′ is optimal min-2-planar and Γ ′

is a min-2-planar drawing of G′.
To show that Γ ′ is not 2-planar, we exploit a property on the degree dis-

tribution of optimal 2-planar graphs from [23], which states that the degree of
each vertex of a 2-planar graph is a multiple of three. In what follows, we show
that G′ contains vertices whose degree is not a multiple of three.

Each vertex of G belongs to the boundary of two hexagonal faces and one
pentagonal face, and it has degree 3. We now show that each vertex of G′ has
degree 9, or 10, or 11, and that not all of them have degree 9. Let u be a vertex
of G′ whose degree is 9 (see, e.g., vertex u in Fig. 4(c)). Since u belongs to the
boundary of two hexagonal faces and one pentagonal face in G, and it has degree
9, it cannot be incident to any diagonals (otherwise it would have degree larger
than 9). This implies that at least one of the vertices that are adjacent to u in G,
call it v, is the end-vertex of at least one diagonal in G′. Two cases are possible:
(a) v is the end-vertex of one diagonal; (b) v is the end-vertex of two diagonals.



In case (a), v has degree 10 (see, e.g., vertex v in Fig. 4(c)); in case (b), v has
degree 11 (see, e.g., vertex z in Fig. 4(c)). ⊓⊔

Theorem 10. There are min-3-planar (non-simple) graphs denser than optimal
3-planar (non-simple) graphs.

Proof. First, consider a planar graph G, and a corresponding drawing Γ , consist-
ing of h parallel chains (h ≥ 1), each with 8 vertices, sharing the two end-vertices
u and v, and interleaved by h copies of edge uv; refer to Fig. 5(a). Then, con-
struct a new graph G′, and a corresponding drawing Γ ′, obtained from G, and
from Γ , by replacing each parallel chain with a copy of the graph G′′ depicted
in Fig. 5(b). In the drawing Γ ′, each copy of G′′ has the same edge crossings
as the drawing illustrated in Fig. 5(b). Graph G′′ has 8 vertices and 33 edges,
and it is min-3-planar. Indeed, only four edges in the drawing of G′′ shown
in the figure have more than three crossings and they do not cross each other
(see the bold edges in Fig. 5(b)). It follows that G′ is min-3-planar; also it has
n = 6h + 2 vertices and m = 33h + h = 34h edges. Since h = n−2

6 , we have
m = 17

3 n− 34
3 = 5.6n− 11.3. Therefore, m > 5.5n− 11 for every n > 1

2 . Since a
3-planar graph has at most 5.5n− 11 edges [29], G′ is not 3-planar. ⊓⊔

A.3 Details for Section 5

Lemma 3. Min-k-planar graphs are a subset of k-gap-planar graphs and of (k+
2)-quasiplanar graphs, for every k ≥ 1.

Proof. Let Γ be a min-k-planar drawing, for any given k ≥ 1. Each crossing in
Γ involves at least one light edge, hence the set of light edges covers all crossings
in Γ . Consider any light edge e and assign each crossing of e to e. Then, consider
a second light edge e′ and assign all unassigned crossings of e′ to e′. Iterate this
procedure until all crossings have been assigned to some light edge. Since each
light edge has at most k crossings, no more than k crossings are assigned to a
single edge. Hence Γ is k-gap-planar.

We now prove that Γ is also (k + 2)-quasi planar. Suppose by contradiction
that this is not the case. This means that Γ contains k + 2 mutually crossing
edges. Since no two heavy edges cross, at least k+1 ≥ 2 of these edges are light
edges. But each of them cross k + 1 times, a contradiction. ⊓⊔

Lemma 4. For any given k ≥ 2, fan-planar and min-k-planar graphs are in-
comparable, i.e., each of the two classes contains graphs that are not in the other.

Proof. The existence of min-k-planar graphs that are not fan-planar is an im-
mediate consequence of the fact that there exist 2-planar graphs that are not
fan-planar [16]. To show the existence of fan-planar graphs that are not min-
k-planar, consider the graph K1,3,h, for any h ≥ 1, and let n = 4 + h be its
number of vertices. It is easy to see that this graph is fan-planar (see, e.g., [16]).
Also, it is known that any drawing of K1,3,h has Ω(h2) = Ω(n2) crossings [8].
On the other hand, by Theorem 1, any min-k-planar drawing with n vertices



has at most c
√
k ·n edges (for a constant c) and therefore, by Property 1, it has

at most ck1.5n crossings. Hence, K1,3,h is not min-k-planar for sufficiently large
values of n. ⊓⊔
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