Skip to main content

Minimizing an Uncrossed Collection of Drawings

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

In this paper, we introduce the following new concept in graph drawing. Our task is to find a small collection of drawings such that they all together satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection uncrossed. This property is motivated by a quintessential problem of the crossing number, where one asks for a drawing where the number of edge crossings is minimum. Indeed, if we are allowed to visualize only one drawing, then the one which minimizes the number of crossings is probably the neatest for the first orientation. However, a collection of drawings where each highlights a different aspect of a graph without any crossings could shed even more light on the graph’s structure.

We propose two definitions. First, the uncrossed number, minimizes the number of graph drawings in a collection, satisfying the uncrossed property. Second, the uncrossed crossing number, minimizes the total number of crossings in the collection that satisfy the uncrossed property. For both definitions, we establish initial results. We prove that the uncrossed crossing number is NP-hard, but there is an \(\textsf{FPT}\) algorithm parameterized by the solution size.

The full version of this paper is available on arXiv [27].

T. M. was supported by Polish National Science Centre SONATA-17 grant number 2021/43/D/ST6/03312.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proofs marked by *are available in the appendix of [27].

  2. 2.

    There are some possible exceptions in case of \(\theta (K_{m,n})\) where the exact value is not known; see [36] for further discussion.

References

  1. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

  2. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. In: Hammer, P.L., Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, North-Holland Mathematics Studies, vol. 60, pp. 9–12. North-Holland (1982). https://doi.org/10.1016/S0304-0208(08)73484-4

  3. Alekseev, V.B., Gončakov, V.S.: The thickness of an arbitrary complete graph. Math. USSR-Sbornik 30(2), 187–202 (1976). https://doi.org/10.1070/sm1976v030n02abeh002267

    Article  MathSciNet  Google Scholar 

  4. Beineke, L.W., Harary, F., Moon, J.W.: On the thickness of the complete bipartite graph. Math. Proc. Cambridge Philos. Soc. 60(1), 1–5 (1964). https://doi.org/10.1017/S0305004100037385

    Article  MathSciNet  Google Scholar 

  5. Biedl, T., Marks, J., Ryall, K., Whitesides, S.: Graph multidrawing: finding nice drawings without defining nice. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 347–355. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_26

    Chapter  Google Scholar 

  6. Cabello, S.: Hardness of approximation for crossing number. Discrete Comput. Geom. 49(2), 348–358 (2012). https://doi.org/10.1007/s00454-012-9440-6

    Article  MathSciNet  Google Scholar 

  7. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/10.1137/120872310

    Article  MathSciNet  Google Scholar 

  8. Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 122–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_11

    Chapter  Google Scholar 

  9. Chimani, M., Hliněný, P.: Inserting multiple edges into a planar graph. In: SoCG. LIPIcs, vol. 51, pp. 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.30

  10. Chuzhoy, J., Tan, Z.: Towards tight(er) bounds for the excluded grid theorem. J. Comb. Theory, Ser. B 146, 219–265 (2021). https://doi.org/10.1016/j.jctb.2020.09.010

  11. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

  12. Dujmović, V., Wood, D.R.: Thickness and antithickness of graphs. J. Comput. Geom. 9(1) (2018). https://doi.org/10.20382/JOCG.V9I1A12

  13. Duncan, C.A.: On graph thickness, geometric thickness, and separator theorems. Comput. Geom. 44(2), 95–99 (2011). https://doi.org/10.1016/j.comgeo.2010.09.005, special issue of selected papers from the 21st Annual Canadian Conference on Computational Geometry

  14. Dvořák, Z., Hliněný, P., Mohar, B.: Structure and generation of crossing-critical graphs. In: SoCG. LIPIcs, vol. 99, pp. 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.SoCG.2018.33

  15. Ganian, R., Hamm, T., Klute, F., Parada, I., Vogtenhuber, B.: Crossing-optimal extension of simple drawings. In: Bansal, N., Merelli, E., Worrell, J. (eds.) ICALP 2021. LIPIcs, vol. 198, pp. 72:1–72:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.72

  16. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Meth. 4(3), 312–316 (1983). https://doi.org/10.1137/060403

    Article  MathSciNet  Google Scholar 

  17. Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. Eur. J. Comb. 25(6), 785–792 (2004). https://doi.org/10.1016/j.ejc.2003.07.007

    Article  MathSciNet  Google Scholar 

  18. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 504–512. STOC 2005, Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1060590.1060666

  19. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004). https://doi.org/10.1016/j.jcss.2003.07.008

    Article  MathSciNet  Google Scholar 

  20. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005). https://doi.org/10.1007/s00453-004-1128-8

    Article  MathSciNet  Google Scholar 

  21. Guy, R.K., Nowakowski, R.J.: The outerthickness & outercoarseness of graphs I. The complete graph & the \(n\)-Cube, pp. 297–310. Physica-Verlag HD, Heidelberg (1990). https://doi.org/10.1007/978-3-642-46908-4_34

  22. Guy, R.K., Nowakowski, R.J.: The outerthickness & outercoarseness of graphs II. the complete bipartite graph. Contemp. Meth. Graph Theory, 313–322 (1990)

    Google Scholar 

  23. Halton, J.H.: On the thickness of graphs of given degree. Inf. Sci. 54(3), 219–238 (1991). https://doi.org/10.1016/0020-0255(91)90052-V

    Article  MathSciNet  Google Scholar 

  24. Hamm, T., Hliněný, P.: Parameterised partially-predrawn crossing number. In: SoCG. LIPIcs, vol. 224, pp. 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.46

  25. Hliněný, P.: Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B 96(4), 455–471 (2006). https://doi.org/10.1016/j.jctb.2005.09.009

  26. Hliněný, P., Derňár, M.: Crossing number is hard for kernelization. In: 32nd International Symposium on Computational Geometry, SoCG 2016, 14–18 June 2016, Boston, MA, USA. LIPIcs, vol. 51, pp. 42:1–42:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.42

  27. Hliněný, P., Masařík, T.: Minimizing an uncrossed collection of drawings. CoRR, pp. 1–17 (2023). https://arxiv.org/abs/2306.09550v2

  28. Kawarabayashi, K.I., Reed, B.: Computing crossing number in linear time. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 382–390. STOC 2007, Association for Computing Machinery (2007). https://doi.org/10.1145/1250790.1250848

  29. Kneis, J., Langer, A.: A practical approach to Courcelle’s theorem. Electron. Notes Theor. Comput. Sci. 251, 65–81 (2009). https://doi.org/10.1016/j.entcs.2009.08.028

    Article  Google Scholar 

  30. Leighton, F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA (1983)

    Google Scholar 

  31. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Cambridge Philos. Soc. 93(1), 9–23 (1983). https://doi.org/10.1017/S030500410006028X

    Article  MathSciNet  Google Scholar 

  32. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Comb. 14(1), 59–73 (1998). https://doi.org/10.1007/PL00007219

    Article  MathSciNet  Google Scholar 

  33. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers of graphs with rotation systems. Algorithmica 60(3), 679–702 (2011). https://doi.org/10.1007/s00453-009-9343-y

    Article  MathSciNet  Google Scholar 

  34. Perković, L., Reed, B.A.: An improved algorithm for finding tree decompositions of small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000). https://doi.org/10.1142/S0129054100000247

    Article  MathSciNet  Google Scholar 

  35. Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs II: planar tiles. J. Graph Theory 42(4), 332–341 (2003). https://doi.org/10.1002/jgt.10097

    Article  MathSciNet  Google Scholar 

  36. Poranen, T., Mäkinen, E.: Remarks on the thickness and outerthickness of a graph. Comput. Math. Appl. 50(1), 249–254 (2005). https://doi.org/10.1016/j.camwa.2004.10.048

    Article  MathSciNet  Google Scholar 

  37. Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006

  38. Sýkora, O., Székely, L.A., Vrto, I.: A note on Halton’s conjecture. Inf. Sci. 164(1), 61–64 (2004). https://doi.org/10.1016/j.ins.2003.06.008

    Article  MathSciNet  Google Scholar 

  39. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces. J. Comb. Theory, Ser. B 70(2), 306–311 (1997). https://doi.org/10.1006/jctb.1997.1761

  40. Vasak, J.M.: The thickness of the complete graph. University of Illinois at Urbana-Champaign (1976). PhD thesis

    Google Scholar 

  41. Wessel, W.: Über die abhängigkeit der dicke eines graphen von seinen knotenpunktvalenzen. Geom. Kombinatorik 2, 235–238 (1984)

    MathSciNet  Google Scholar 

  42. Xu, B., Zha, X.: Thickness and outerthickness for embedded graphs. Discret. Math. 341(6), 1688–1695 (2018). https://doi.org/10.1016/j.disc.2018.02.024

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Masařík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hliněný, P., Masařík, T. (2023). Minimizing an Uncrossed Collection of Drawings. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49272-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49271-6

  • Online ISBN: 978-3-031-49272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics