Abstract
In this paper, we introduce the following new concept in graph drawing. Our task is to find a small collection of drawings such that they all together satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection uncrossed. This property is motivated by a quintessential problem of the crossing number, where one asks for a drawing where the number of edge crossings is minimum. Indeed, if we are allowed to visualize only one drawing, then the one which minimizes the number of crossings is probably the neatest for the first orientation. However, a collection of drawings where each highlights a different aspect of a graph without any crossings could shed even more light on the graph’s structure.
We propose two definitions. First, the uncrossed number, minimizes the number of graph drawings in a collection, satisfying the uncrossed property. Second, the uncrossed crossing number, minimizes the total number of crossings in the collection that satisfy the uncrossed property. For both definitions, we establish initial results. We prove that the uncrossed crossing number is NP-hard, but there is an \(\textsf{FPT}\) algorithm parameterized by the solution size.
The full version of this paper is available on arXiv [27].
T. M. was supported by Polish National Science Centre SONATA-17 grant number 2021/43/D/ST6/03312.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574
Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. In: Hammer, P.L., Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, North-Holland Mathematics Studies, vol. 60, pp. 9–12. North-Holland (1982). https://doi.org/10.1016/S0304-0208(08)73484-4
Alekseev, V.B., Gončakov, V.S.: The thickness of an arbitrary complete graph. Math. USSR-Sbornik 30(2), 187–202 (1976). https://doi.org/10.1070/sm1976v030n02abeh002267
Beineke, L.W., Harary, F., Moon, J.W.: On the thickness of the complete bipartite graph. Math. Proc. Cambridge Philos. Soc. 60(1), 1–5 (1964). https://doi.org/10.1017/S0305004100037385
Biedl, T., Marks, J., Ryall, K., Whitesides, S.: Graph multidrawing: finding nice drawings without defining nice. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 347–355. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_26
Cabello, S.: Hardness of approximation for crossing number. Discrete Comput. Geom. 49(2), 348–358 (2012). https://doi.org/10.1007/s00454-012-9440-6
Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/10.1137/120872310
Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 122–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_11
Chimani, M., Hliněný, P.: Inserting multiple edges into a planar graph. In: SoCG. LIPIcs, vol. 51, pp. 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.30
Chuzhoy, J., Tan, Z.: Towards tight(er) bounds for the excluded grid theorem. J. Comb. Theory, Ser. B 146, 219–265 (2021). https://doi.org/10.1016/j.jctb.2020.09.010
Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H
Dujmović, V., Wood, D.R.: Thickness and antithickness of graphs. J. Comput. Geom. 9(1) (2018). https://doi.org/10.20382/JOCG.V9I1A12
Duncan, C.A.: On graph thickness, geometric thickness, and separator theorems. Comput. Geom. 44(2), 95–99 (2011). https://doi.org/10.1016/j.comgeo.2010.09.005, special issue of selected papers from the 21st Annual Canadian Conference on Computational Geometry
Dvořák, Z., Hliněný, P., Mohar, B.: Structure and generation of crossing-critical graphs. In: SoCG. LIPIcs, vol. 99, pp. 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.SoCG.2018.33
Ganian, R., Hamm, T., Klute, F., Parada, I., Vogtenhuber, B.: Crossing-optimal extension of simple drawings. In: Bansal, N., Merelli, E., Worrell, J. (eds.) ICALP 2021. LIPIcs, vol. 198, pp. 72:1–72:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.72
Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Meth. 4(3), 312–316 (1983). https://doi.org/10.1137/060403
Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. Eur. J. Comb. 25(6), 785–792 (2004). https://doi.org/10.1016/j.ejc.2003.07.007
Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 504–512. STOC 2005, Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1060590.1060666
Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004). https://doi.org/10.1016/j.jcss.2003.07.008
Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005). https://doi.org/10.1007/s00453-004-1128-8
Guy, R.K., Nowakowski, R.J.: The outerthickness & outercoarseness of graphs I. The complete graph & the \(n\)-Cube, pp. 297–310. Physica-Verlag HD, Heidelberg (1990). https://doi.org/10.1007/978-3-642-46908-4_34
Guy, R.K., Nowakowski, R.J.: The outerthickness & outercoarseness of graphs II. the complete bipartite graph. Contemp. Meth. Graph Theory, 313–322 (1990)
Halton, J.H.: On the thickness of graphs of given degree. Inf. Sci. 54(3), 219–238 (1991). https://doi.org/10.1016/0020-0255(91)90052-V
Hamm, T., Hliněný, P.: Parameterised partially-predrawn crossing number. In: SoCG. LIPIcs, vol. 224, pp. 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.46
Hliněný, P.: Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B 96(4), 455–471 (2006). https://doi.org/10.1016/j.jctb.2005.09.009
Hliněný, P., Derňár, M.: Crossing number is hard for kernelization. In: 32nd International Symposium on Computational Geometry, SoCG 2016, 14–18 June 2016, Boston, MA, USA. LIPIcs, vol. 51, pp. 42:1–42:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.42
Hliněný, P., Masařík, T.: Minimizing an uncrossed collection of drawings. CoRR, pp. 1–17 (2023). https://arxiv.org/abs/2306.09550v2
Kawarabayashi, K.I., Reed, B.: Computing crossing number in linear time. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 382–390. STOC 2007, Association for Computing Machinery (2007). https://doi.org/10.1145/1250790.1250848
Kneis, J., Langer, A.: A practical approach to Courcelle’s theorem. Electron. Notes Theor. Comput. Sci. 251, 65–81 (2009). https://doi.org/10.1016/j.entcs.2009.08.028
Leighton, F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA (1983)
Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Cambridge Philos. Soc. 93(1), 9–23 (1983). https://doi.org/10.1017/S030500410006028X
Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Comb. 14(1), 59–73 (1998). https://doi.org/10.1007/PL00007219
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers of graphs with rotation systems. Algorithmica 60(3), 679–702 (2011). https://doi.org/10.1007/s00453-009-9343-y
Perković, L., Reed, B.A.: An improved algorithm for finding tree decompositions of small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000). https://doi.org/10.1142/S0129054100000247
Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs II: planar tiles. J. Graph Theory 42(4), 332–341 (2003). https://doi.org/10.1002/jgt.10097
Poranen, T., Mäkinen, E.: Remarks on the thickness and outerthickness of a graph. Comput. Math. Appl. 50(1), 249–254 (2005). https://doi.org/10.1016/j.camwa.2004.10.048
Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006
Sýkora, O., Székely, L.A., Vrto, I.: A note on Halton’s conjecture. Inf. Sci. 164(1), 61–64 (2004). https://doi.org/10.1016/j.ins.2003.06.008
Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces. J. Comb. Theory, Ser. B 70(2), 306–311 (1997). https://doi.org/10.1006/jctb.1997.1761
Vasak, J.M.: The thickness of the complete graph. University of Illinois at Urbana-Champaign (1976). PhD thesis
Wessel, W.: Über die abhängigkeit der dicke eines graphen von seinen knotenpunktvalenzen. Geom. Kombinatorik 2, 235–238 (1984)
Xu, B., Zha, X.: Thickness and outerthickness for embedded graphs. Discret. Math. 341(6), 1688–1695 (2018). https://doi.org/10.1016/j.disc.2018.02.024
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hliněný, P., Masařík, T. (2023). Minimizing an Uncrossed Collection of Drawings. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-49272-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49271-6
Online ISBN: 978-3-031-49272-3
eBook Packages: Computer ScienceComputer Science (R0)