Skip to main content

Different Types of Isomorphisms of Drawings of Complete Multipartite Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

Simple drawings are drawings of graphs in which any two edges intersect at most once (either at a common endpoint or a proper crossing), and no edge intersects itself. We analyze several characteristics of simple drawings of complete multipartite graphs: which pairs of edges cross, in which order they cross, and the cyclic order around vertices and crossings, respectively. We consider all possible combinations of how two drawings can share some characteristics and determine which other characteristics they imply and which they do not imply. Our main results are that for simple drawings of complete multipartite graphs, the orders in which edges cross determine all other considered characteristics. Further, if all partition classes have at least three vertices, then the pairs of edges that cross determine the rotation system and the rotation around the crossings determine the extended rotation system. We also show that most other implications – including the ones that hold for complete graphs – do not hold for complete multipartite graphs. Using this analysis, we establish which types of isomorphisms are meaningful for simple drawings of complete multipartite graphs.

O. Aichholzer and B. Vogtenhuber partially supported by Austrian Science Fund (FWF) within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. O. Aichholzer, B. Vogtenhuber and A. Weinberger partially supported by FWF grant W1230.

We thank the reviewers of EuroCG’21 and GD’23 for their very helpful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://figshare.com/s/97449727daca12d6bbf6

  2. Aichholzer, O., Chiu, M.K., Hoang, H.P., Hoffmann, M., Kynčl, J., Maus, Y., Vogtenhuber, B., Weinberger, A.: Drawings of complete multipartite graphs up to triangle flips. In: 39th International Symposium on Computational Geometry, LIPIcs. Leibniz International Proceedings in Informatics, vol. 258, pp. 6:1–6:16. Schloss Dagstuhl. Leibniz-Zent. Inform. Wadern (2023). https://doi.org/10.4230/lipics.socg.2023.6

  3. Aichholzer, O., García, A., Parada, I., Vogtenhuber, B., Weinberger, A.: Shooting stars in simple drawings of \(K_{m, n}\). In: Angelini, P., von Hanxleden, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 49–57. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22203-0_5

    Chapter  Google Scholar 

  4. Aichholzer, O., Vogtenhuber, B., Weinberger, A.: Different types of isomorphisms of drawings of complete multipartite graphs (2023). http://arxiv.org/abs/2308.10735v1

  5. Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Drawings of \(K_n\) with the same rotation scheme are the same up to triangle-flips (Gioan’s theorem). Australas. J. Combin. 67, 131–144 (2017). https://ajc.maths.uq.edu.au/pdf/67/ajc_v67_p131.pdf

  6. Asano, K.: The crossing number of \(K_{1,3, n}\) and \(K_{2,3, n}\). J. Graph Theory 10(1), 1–8 (1986). https://doi.org/10.1002/jgt.3190100102

  7. Brötzner, A.: Isomorphism Classes of Drawings of \(K_{3,3}\). Bachelor’s thesis, Graz University of Technology (2021)

    Google Scholar 

  8. Cardinal, J., Felsner, S.: Topological drawings of complete bipartite graphs. J. Comput. Geom. 9(1), 213–246 (2018). https://doi.org/10.20382/jocg.v9i1a7

    Article  MathSciNet  Google Scholar 

  9. Fabila-Monroy, R., Paul, R., Viafara-Chanchi, J., Weinberger, A.: On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs. In: Abstracts of XX Encuentros de Geometría Computacional (EGC 2023), pp. 33–36 (2023). https://egc23.web.uah.es/wp-content/uploads/2023/07/EGC2023_Booklet.pdf#page=45

  10. Gethner, E., Hogben, L., Lidickỳ, B., Pfender, F., Ruiz, A., Young, M.: On crossing numbers of complete tripartite and balanced complete multipartite graphs. J. Graph Theory 4(84), 552–565 (2017). https://onlinelibrary.wiley.com/doi/full/10.1002/jgt.22041

  11. Gioan, E.: Complete graph drawings up to triangle mutations. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 139–150. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686_13

    Chapter  Google Scholar 

  12. Gioan, E.: Complete graph drawings up to triangle mutations. Discrete Comput. Geom. 67, 985–1022 (2022). https://doi.org/10.1007/s00454-021-00339-8

    Article  MathSciNet  Google Scholar 

  13. Harborth, H.: Über die Kreuzungszahl vollständiger, \(n\)-geteilter Graphen. Math. Nachr. 48, 179–188 (1971). https://doi.org/10.1002/mana.19710480113

    Article  MathSciNet  Google Scholar 

  14. Harborth, H.: Parity of numbers of crossings for complete \(n\)-partite graphs. Mathematica Slovaca 26(2), 77–95 (1976). http://eudml.org/doc/33976

  15. Ho, P.T.: The crossing number of \(K_{2,4, n}\). Ars Combin. 109, 527–537 (2013)

    MathSciNet  Google Scholar 

  16. Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discrete Comput. Geom. 45(3), 383–399 (2011). https://doi.org/10.1007/s00454-010-9320-x

  17. Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput. Geom. 50(3), 727–770 (2013). https://doi.org/10.1007/s00454-013-9535-8

    Article  MathSciNet  Google Scholar 

  18. Mengersen, I.: Kreuzungsfreie Kanten in vollständigen n-geteilten Graphen. Ph.D. thesis, Technische Universität Braunschweig (1975)

    Google Scholar 

  19. Ouyang, Z., Wang, J., Huang, Y.: Two recursive inequalities for crossing numbers of graphs. Front. Math. China 12(3), 703–709 (2017). https://doi.org/10.1007/s11464-016-0618-8

    Article  MathSciNet  Google Scholar 

  20. Prinoth, K.: Computing exhaustive lists of complete bipartite simple drawings. Bachelor’s thesis, Graz University of Technology (2021)

    Google Scholar 

  21. Schaefer, M.: Crossing numbers of graphs. Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL (2018). https://doi.org/10.1201/9781315152394

  22. Schaefer, M.: Taking a detour; or, Gioan’s theorem, and pseudolinear drawings of complete graphs. Discrete Comput. Geom. 66, 12–31 (2021). https://doi.org/10.1007/s00454-021-00296-2

    Article  MathSciNet  Google Scholar 

  23. Zarankiewicz, K.: On a problem of P. Turan concerning graphs. Fund. Math. 41, 137–145 (1954). https://doi.org/10.4064/fm-41-1-137-145

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichholzer, O., Vogtenhuber, B., Weinberger, A. (2023). Different Types of Isomorphisms of Drawings of Complete Multipartite Graphs. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14466. Springer, Cham. https://doi.org/10.1007/978-3-031-49275-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49275-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49274-7

  • Online ISBN: 978-3-031-49275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics