Skip to main content

Understanding Mobile Game Reviews Through Sentiment Analysis: A Case Study of PUBGm

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2023)

Abstract

Mobile games are increasingly gaining popularity within the gaming industry due to their unique features and experiences, distinct from conventional platforms like desktops and consoles. Understanding player feedback and reviews is crucial for enhancing game services and optimizing user experiences. This paper focuses on analyzing player reviews within the realm of mobile esports. We introduce a comprehensive framework that employs topic modeling and sentiment analysis to extract insightful keywords from a vast collection of reviews. Utilizing the Latent Dirichlet Allocation algorithm, we uncover diverse topics within the reviews. Furthermore, we exploit Bidirectional Encoder Representations from Transformers (BERT) combined with a Transformer (TFM) downstream layer for precise sentiment analysis, capturing players’ sentiments towards various topics. The experiment was conducted on a dataset containing six million English reviews collected up to March 2023 for the mobile game PUBGm from Google Play. The experimental results demonstrate the framework’s proficiency in efficiently identifying player concerns and revealing significant keywords embedded in their reviews, thereby supporting mobile esports game operators to refine services and elevate the gaming experience for all players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/huggingface/transformers.

  2. 2.

    https://pypi.org/project/google-play-scraper/.

References

  1. Baowaly, M.K., Tu, Y.P., Chen, K.T.: Predicting the helpfulness of game reviews: a case study on the steam store. J. Intell. Fuzzy Syst. 36(5), 4731–4742 (2019)

    Article  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    Google Scholar 

  3. Bond, M., Beale, R.: What makes a good game? using reviews to inform design. People Comput. XXIII Celebrating People Technol., 418–422 (2009)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  5. Gifford, B.: Reviewing the critics: examining popular video game reviews through a comparative content analysis. Ph.D. thesis, School of Communication, Cleveland State University (2013)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Lin, D., Bezemer, C.P., Zou, Y., Hassan, A.E.: An empirical study of game reviews on the steam platform. Empirical Softw. Eng. 24(1), 170–207 (2019)

    Article  Google Scholar 

  8. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Rafael, California (2012)

    Book  Google Scholar 

  9. Livingston, I.J., Nacke, L.E., Mandryk, R.L.: The impact of negative game reviews and user comments on player experience. In: Proceedings of the 2011 ACM SIGGRAPH Symposium on Video Games, pp. 25–29 (2011)

    Google Scholar 

  10. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human language technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 100–108 (2010)

    Google Scholar 

  11. Ruseti, S., Sirbu, M.-D., Calin, M.A., Dascalu, M., Trausan-Matu, S., Militaru, G.: Comprehensive exploration of game reviews extraction and opinion mining using NLP techniques. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Fourth International Congress on Information and Communication Technology. AISC, vol. 1041, pp. 323–331. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0637-6_27

    Chapter  Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Yu, Y., Dinh, D.T., Nguyen, B.H., Yu, F., Huynh, V.N.: Mining insights from esports game reviews with an aspect-based sentiment analysis framework. IEEE Access 11 (2023)

    Google Scholar 

  14. Yu, Y., Nguyen, B.H., Dinh, D.T., Yu, F., Fujinami, T., Huynh, V.N.: A topic modeling approach for exploring attraction of dark souls series reviews on steam. In: Intelligent Human Systems Integration (IHSI 2022): Integrating People and Intelligent Systems, vol. 22. AHFE Open Access (2022)

    Google Scholar 

  15. Zagal, J.P., Ladd, A., Johnson, T.: Characterizing and understanding game reviews. In: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 215–222 (2009)

    Google Scholar 

  16. Zagal, J.P., Tomuro, N., Shepitsen, A.: Natural language processing in game studies research: an overview. Simul. Gaming 43(3), 356–373 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yu or Tai Dinh .

Editor information

Editors and Affiliations

Ethics declarations

Dataset and Source Code

The experimental datasets and source code can be found at this repository: https://github.com/YYdeeplearning/MEDI2023.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Dinh, T., Yu, F., Huynh, VN. (2024). Understanding Mobile Game Reviews Through Sentiment Analysis: A Case Study of PUBGm. In: Mosbah, M., Kechadi, T., Bellatreche, L., Gargouri, F. (eds) Model and Data Engineering. MEDI 2023. Lecture Notes in Computer Science, vol 14396. Springer, Cham. https://doi.org/10.1007/978-3-031-49333-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49333-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49332-4

  • Online ISBN: 978-3-031-49333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics