Skip to main content

AutoPose: Pose Estimation for Prevention of Musculoskeletal Disorders Using LSTM

  • Conference paper
  • First Online:
Innovative Intelligent Industrial Production and Logistics (IN4PL 2023)

Abstract

Office work has become the most prevalent occupation in contemporary society, necessitating long hours of sedentary behavior that can lead to mental and physical fatigue, including the risk of developing musculoskeletal disorders (MSDs). To address this issue, we have proposed an innovative system that utilizes the NAO robot for posture alerts and camera for image capture, YoloV7 for landmark extraction, and an LSTM recurrent network for posture prediction. Although our model has shown promise, further improvements can be made, particularly by enhancing the dataset’s robustness. With a more comprehensive and diverse dataset, we anticipate a significant enhancement in the model’s performance. In our evaluation, the model achieved an accuracy of 67%, precision of 44%, recall of 67%, and an F1 score of 53%. These metrics provide valuable insights into the system’s effectiveness and highlight the areas where further refinements can be implemented. By refining the model and leveraging a more extensive dataset, we aim to enhance the accuracy and precision of bad posture detection, thereby empowering office workers to adopt healthier postural habits and reduce the risk of developing MSDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PyTorch - https://pytorch.org/.

  2. 2.

    NaoQi SDK - https://www.softbankrobotics.com/emea/en/naoqi-developer-program/.

  3. 3.

    OpenCV - https://opencv.org/.

References

  1. Arshad, J., Asim, H.M., Ashraf, M.A., Jaffery, M.H., Zaidi, K.S., Amentie, M.D.: An intelligent cost-efficient system to prevent the improper posture hazards in offices using machine learning algorithms. Comput. Intell. Neurosci. 2022, 1–9 (2022)

    Article  Google Scholar 

  2. Burga-Gutierrez, E., Vasquez-Chauca, B., Ugarte, W.: Comparative analysis of question answering models for HRI tasks with NAO in Spanish. In: SIMBig, vol. 1410, pp. 3–17 (2020)

    Google Scholar 

  3. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: OpenPose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021)

    Article  Google Scholar 

  4. Daneshmandi, H., Choobineh, A., Ghaem, H., Karimi, M.: Adverse effects of prolonged sitting behavior on the general health of office workers. J. Lifestyle Med. 7(2), 69–75 (2017)

    Article  Google Scholar 

  5. Feradov, F., Markova, V., Ganchev, T.: Automated detection of improper sitting postures in computer users based on motion capture sensors. Comput. 11(7), 116 (2022)

    Article  Google Scholar 

  6. Fernandez-Ramos, O., Johnson-Yañez, D., Ugarte, W.: Reproducing arm movements based on pose estimation with robot programming by demonstration. In: IEEE ICTAI, pp. 294–298 (2021)

    Google Scholar 

  7. Gómez-Galán, M., Pérez-Alonso, J., Callejón-Ferre, Á.J., López-Martínez, J.: Musculoskeletal disorders: OWAS review. Ind. Health 55(4), 314–337 (2017)

    Article  Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Jiang, Y., Hu, H., Pu, Y., Jiang, H.: Wilay: building wi-fi-based human activity recognition system through activity hierarchical relationship. In: ACM MobiQuitous, pp. 210–219 (2019)

    Google Scholar 

  12. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DoF camera relocalization. In: IEEE ICCV, pp. 2938–2946 (2015)

    Google Scholar 

  13. Kulikajevas, A., Maskeliunas, R., Damasevicius, R.: Detection of sitting posture using hierarchical image composition and deep learning. PeerJ Comput. Sci. 7, e442 (2021)

    Article  Google Scholar 

  14. Lee, Y., Lee, C.: SEE: a proactive strategy-centric and deep learning-based ergonomic risk assessment system for risky posture recognition. Adv. Eng. Inform. 53, 101717 (2022)

    Article  Google Scholar 

  15. Leon-Urbano, C., Ugarte, W.: End-to-end electroencephalogram (EEG) motor imagery classification with long short-term. In: IEEE SSCI, pp. 2814–2820 (2020)

    Google Scholar 

  16. Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines. CoRR abs/1906.08172 (2019)

    Google Scholar 

  17. McAtamney, L., Corlett, E.N.: RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24(2), 91–99 (1993)

    Article  Google Scholar 

  18. Najafi, T.A., Abramo, A., Kyamakya, K., Affanni, A.: Development of a smart chair sensors system and classification of sitting postures with deep learning algorithms. Sensors 22(15), 5585 (2022)

    Article  Google Scholar 

  19. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36(2), 674–683 (2017)

    Article  Google Scholar 

  20. Rodriguez, R.A., Ferroa-Guzman, J., Ugarte, W.: Classification of respiratory diseases using the NAO robot. In: ICPRAM, pp. 940–947 (2023)

    Google Scholar 

  21. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks, pp. 4510–4520 (2018)

    Google Scholar 

  22. Wang, C., Bochkovskiy, A., Liao, H.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CoRR abs/2207.02696 (2022)

    Google Scholar 

  23. Yue, S., Yang, Y., Wang, H., Rahul, H., Katabi, D.: BodyCompass: monitoring sleep posture with wireless signals. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(2), 66:1–66:25 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Ugarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bassino-Riglos, F., Mosqueira-Chacon, C., Ugarte, W. (2023). AutoPose: Pose Estimation for Prevention of Musculoskeletal Disorders Using LSTM. In: Terzi, S., Madani, K., Gusikhin, O., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2023. Communications in Computer and Information Science, vol 1886. Springer, Cham. https://doi.org/10.1007/978-3-031-49339-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49339-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49338-6

  • Online ISBN: 978-3-031-49339-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics