Abstract
This paper presents an innovative approach to overcoming the limitations of traditional cloud-centric architectures in the evolving Internet of Things (IoT) landscape. We introduce a set of novel decentralized algorithms boosting Mobile Edge Computing (MEC), a paradigm shift towards placing computational resources near data sources, thus boosting real-time processing and energy efficiency. Our approach addresses the challenges of managing distributed Cloud-edge infrastructures in high-mobility environments, such as drone networks. Utilizing the Random Waypoint Model to anticipate device trajectories, our algorithms ensure effective resource allocation, enhanced load balancing, and improved Quality of Service (QoS). An in-depth complexity analysis further improves the scalability and performance of our method, demonstrating their ability to optimize energy efficiency and minimize latency, offering optimized offloading strategies in dynamic IoT environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angel, N.A., Ravindran, D., Vincent, P.D.R., Srinivasan, K., Hu, Y.C.: Recent advances in evolving computing paradigms: cloud, edge, and fog technologies. Sensors 22(1), 196 (2021)
Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)
Chauhan, N., Kaur, N., Saini, K.S.: Energy efficient resource allocation in cloud data center: a comparative analysis. In: 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), pp. 201–206 (2022). https://doi.org/10.1109/ICCMSO58359.2022.00049
Chekired, D.A., Khoukhi, L., Mouftah, H.T.: Decentralized Cloud-SDN architecture in smart grid: a dynamic pricing model. IEEE Trans. Industr. Inf. 14(3), 1220–1231 (2018). https://doi.org/10.1109/TII.2017.2742147
Chen, S., Chen, J., Miao, Y., Wang, Q., Zhao, C.: Deep reinforcement learning-based cloud-edge collaborative mobile computation offloading in industrial networks. IEEE Trans. Signal Inf. Process. Netw. 8, 364–375 (2022). https://doi.org/10.1109/TSIPN.2022.3171336
Fernandez Blanco, D., Le Mouel, F., Lin, T., Ponge, J.: An energy-efficient FaaS edge computing platform over IoT nodes: focus on consensus algorithm. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, pp. 661–670 (2023)
Fu, W., Wan, Y., Qin, J., Kang, Y., Li, L.: Privacy-preserving optimal energy management for smart grid with cloud-edge computing. IEEE Trans. Industr. Inf. 18(6), 4029–4038 (2022). https://doi.org/10.1109/TII.2021.3114513
Han, T., Muhammad, K., Hussain, T., Lloret, J., Baik, S.W.: An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 8(5), 3170–3179 (2020)
Jayanetti, A., Halgamuge, S., Buyya, R.: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge-cloud computing environments. Futur. Gener. Comput. Syst. 137, 14–30 (2022)
Karras, A., Karras, C., Giannaros, A., Tsolis, D., Sioutas, S.: Mobility-aware workload distribution and task allocation for mobile edge computing networks. In: Daimi, K., Al Sadoon, A. (eds.) ACR 2023. LNNS, vol. 700, pp. 395–407. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33743-7_32
Khan, U.A., Khalid, W., Saifullah, S.: Energy efficient resource allocation and computation offloading strategy in a UAV-enabled secure edge-cloud computing system. In: 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 58–63 (2020). https://doi.org/10.1109/SmartIoT49966.2020.00018
Li, Y.: Resource allocation in a Cloud partially powered by renewable energy sources. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom Atlantique (2017)
Lim, W.Y.B., et al.: Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning. IEEE Trans. Parallel Distrib. Syst. 33(3), 536–550 (2022). https://doi.org/10.1109/TPDS.2021.3096076
Liu, P., Chaudhry, S.R., Huang, T., Wang, X., Collier, M.: Multi-factorial energy aware resource management in edge networks. IEEE Trans. Green Commun. Netw. 3(1), 45–56 (2019). https://doi.org/10.1109/TGCN.2018.2874397
Marozzo, F., Orsino, A., Talia, D., Trunfio, P.: Edge computing solutions for distributed machine learning. In: 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 1–8. IEEE (2022)
Pantazoglou, M., Tzortzakis, G., Delis, A.: Decentralized and energy-efficient workload management in enterprise clouds. IEEE Trans. Cloud Comput. 4(2), 196–209 (2016). https://doi.org/10.1109/TCC.2015.2464817
Rafique, H., Shah, M.A., Islam, S.U., Maqsood, T., Khan, S., Maple, C.: A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing. IEEE Access 7, 115760–115773 (2019). https://doi.org/10.1109/ACCESS.2019.2924958
Rey-Jouanchicot, J., Del Castillo, J.Á.L., Zuckerman, S., Belmega, E.V.: Energy-efficient online resource provisioning for cloud-edge platforms via multi-armed bandits. In: 2022 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), pp. 45–50. IEEE (2022)
da Silva, M.D.M., Gamatié , A., Sassatelli, G., Poss, M., Robert, M.: Optimization of data and energy migrations in mini data centers for carbon-neutral computing. IEEE Trans. Sustain. Comput. 8(1), 68–81 (2023). https://doi.org/10.1109/TSUSC.2022.3197090
Tian, Z., Li, H., Maeda, R.K.V., Feng, J., Xu, J.: Decentralized collaborative power management through multi-device knowledge sharing. In: 2018 IEEE 36th International Conference on Computer Design (ICCD), pp. 409–412. IEEE (2018)
Wang, S., Xin, N., Luo, Z., Lin, T.: An efficient computation offloading strategy based on cloud-edge collaboration in vehicular edge computing. In: 2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT), pp. 193–197 (2022). https://doi.org/10.1109/CCPQT56151.2022.00041
Xiong, Z., Kang, J., Niyato, D., Wang, P., Poor, H.V.: Cloud/edge computing service management in blockchain networks: multi-leader multi-follower game-based ADMM for pricing. IEEE Trans. Serv. Comput. 13(2), 356–367 (2019)
Zahoor, S., Javaid, N., Khan, A., Ruqia, B., Muhammad, F.J., Zahid, M.: A cloud-fog-based smart grid model for efficient resource utilization. In: 2018 14th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1154–1160 (2018). https://doi.org/10.1109/IWCMC.2018.8450506
Zahoor, S., Javaid, S., Javaid, N., Ashraf, M., Ishmanov, F., Afzal, M.K.: Cloud-fog-based smart grid model for efficient resource management. Sustainability 10(6), 2079 (2018)
Zhang, W., Zhang, Z., Zeadally, S., Chao, H.C., Leung, V.C.M.: Energy-efficient workload allocation and computation resource configuration in distributed cloud/edge computing systems with stochastic workloads. IEEE J. Sel. Areas Commun. 38(6), 1118–1132 (2020). https://doi.org/10.1109/JSAC.2020.2986614
Acknowledgements
This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T2E\(\Delta \)K-00127).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Karras, A. et al. (2024). Decentralized Algorithms for Efficient Energy Management over Cloud-Edge Infrastructures. In: Chatzigiannakis, I., Karydis, I. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2023. Lecture Notes in Computer Science, vol 14053. Springer, Cham. https://doi.org/10.1007/978-3-031-49361-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-49361-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49360-7
Online ISBN: 978-3-031-49361-4
eBook Packages: Computer ScienceComputer Science (R0)