Skip to main content

Algorithmic Aspects of Distributed Hash Tables on Cloud, Fog, and Edge Computing Applications: A Survey

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2023)

Abstract

In the current era, where data is expanding due to the unforeseen volume, velocity, and variety of data types produced by IoT devices, there is an imperative need to manage such data in remote IoT environments. However, these complexities have been inadequately addressed by conventional data management methods. In such scenarios, Distributed Hash Tables (DHTs) have emerged as an effective solution for efficient data storage and retrieval. Conversely, the dynamizature of IoT data presents its own set of challenges, such as decreased performance, inconsistent data, and increased overhead. To improve the performance of DHTs, we examine their algorithmic properties in cloud, fog, and edge computing environments, taking into account network designs, resource availability, latency requirements, and data proximity. This survey explores the adaptation of algorithmic elements in DHTs for optimal data administration in these cloud computing environments. Moreover, we examine advanced techniques such as effective hashing, adaptive routing, defect tolerance mechanisms, and load balancing. In addition, we address the challenges of managing vast and diverse volumes of IoT data, taking into account the unique features and constraints of cloud, fog, and edge environments. We also conduct contemporary research on security and privacy, focusing on algorithmic and architectural solutions for data integrity, confidentiality, and availability. This work enhances our comprehension of dynamic DHT algorithms and their potential for effective data management across multiple computing paradigms by investigating state-of-the-art research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One-of-a-kind with a very high probability. Since it is extremely unlikely, formal DHT specifications frequently ignore the hash collision risk. Any of the collision resolution techniques, including chaining and linear probing, may be used to handle this for any file. The only canonical solution to a collision between two nodes, whether it is a node or a file, is to hope it doesn’t happen.

  2. 2.

    Many businesses are discontinuing SHA1 in 2017 because of the study on hash collisions [76] and the availability of hardware available to do SHA hash collisions.

  3. 3.

    0 is the 0th level.

  4. 4.

    Randomly chosen from a specified distribution.

  5. 5.

    Technically, this is a one-dimensional lattice.

References

  1. Abed, M.M., Younis, M.F.: Developing load balancing for IoT-cloud computing based on advanced firefly and weighted round robin algorithms. Baghdad Sci. J. 16(1), 130–139 (2019)

    Article  Google Scholar 

  2. Abid, S.A., Othman, M., Shah, N.: A survey on DHT-based routing for large-scale mobile ad hoc networks. ACM Comput. Surv. (CSUR) 47(2), 1–46 (2014)

    Article  Google Scholar 

  3. Alladi, T., Chamola, V., Rodrigues, J.J.P.C., Kozlov, S.A.: Blockchain in smart grids: a review on different use cases. Sensors 19(22) (2019). https://doi.org/10.3390/s19224862. https://www.mdpi.com/1424-8220/19/22/4862

  4. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. (CSUR) 36(4), 335–371 (2004)

    Article  Google Scholar 

  5. Backes, M., Goldberg, I., Kate, A., Toft, T.: Adding query privacy to robust DHTs. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, pp. 30–31 (2012)

    Google Scholar 

  6. Balatsouras, C.P., Karras, A., Karras, C., Tsolis, D., Sioutas, S.: WiCHORD: a chord protocol application on P2P LoRa wireless sensor networks. In: 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–8 (2022). https://doi.org/10.1109/IISA56318.2022.9904339

  7. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR abs/1407.3561 (2014). arxiv.org/abs/1407.3561

  8. Berdik, D., Otoum, S., Schmidt, N., Porter, D., Jararweh, Y.: A survey on blockchain for information systems management and security. Inf. Process. Manag. 58(1), 102397 (2021)

    Article  Google Scholar 

  9. Bonvin, N., Papaioannou, T.G., Aberer, K.: A self-organized, fault-tolerant and scalable replication scheme for cloud storage. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, pp. 205–216. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1807128.1807162

  10. Cassandra, A.: Apache Cassandra. 13 (2014). http://planetcassandraorg/what-is-apache-cassandra

  11. Condie, T., Kacholia, V., Sank, S., Hellerstein, J.M., Maniatis, P.: Induced churn as shelter from routing-table poisoning. In: NDSS (2006)

    Google Scholar 

  12. Confais, B., Lebre, A., Parrein, B.: An object store service for a fog/edge computing infrastructure based on IPFS and a scale-out NAS. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 41–50. IEEE (2017)

    Google Scholar 

  13. Cooper, C., Franklin, D., Ros, M., Safaei, F., Abolhasan, M.: A comparative survey of VANET clustering techniques. IEEE Commun. Surv. Tutorials 19(1), 657–681 (2016)

    Article  Google Scholar 

  14. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API for structured peer-to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 33–44. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_3

    Chapter  Google Scholar 

  15. D’Angelo, M., Caporuscio, M.: SA-Chord: a self-adaptive P2P overlay network. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W), pp. 118–123. IEEE (2018)

    Google Scholar 

  16. De Salve, A., Mori, P., Ricci, L.: A survey on privacy in decentralized online social networks. Comput. Sci. Rev. 27, 154–176 (2018)

    Article  Google Scholar 

  17. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 205–220. ACM (2007)

    Google Scholar 

  18. Demertzis, F.F., Karopoulos, G., Xenakis, C., Colarieti, A.: Self-organised key management for the smart grid. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 303–316. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_21

    Chapter  Google Scholar 

  19. Egala, B.S., Pradhan, A.K., Dey, P., Badarla, V., Mohanty, S.P.: Fortified-chain 2.0: intelligent blockchain for decentralized smart healthcare system. IEEE Internet Things J., 1 (2023). https://doi.org/10.1109/JIOT.2023.3247452

  20. El-Salakawy, G., Abu El-Kheir, M.: Blockchain-based data management in vehicular networks. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 146–151 (2020). https://doi.org/10.1109/NILES50944.2020.9257890

  21. Fersi, G., Louati, W., Ben Jemaa, M.: Distributed hash table-based routing and data management in wireless sensor networks: a survey. Wireless Netw. 19, 219–236 (2013)

    Article  Google Scholar 

  22. Freedman, M.J., Freudenthal, E., Mazieres, D.: Democratizing content publication with coral. In: NSDI, vol. 4, p. 18 (2004)

    Google Scholar 

  23. Geambasu, R., Falkner, J., Gardner, P., Kohno, T., Krishnamurthy, A., Levy, H.M.: Experiences building security applications on DHTs. Technical report, UW-CSE-09-09-01 (2009)

    Google Scholar 

  24. Gedeon, J., Meurisch, C., Bhat, D., Stein, M., Wang, L., Mühlhäuser, M.: Router-based brokering for surrogate discovery in edge computing. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 145–150. IEEE (2017)

    Google Scholar 

  25. Ghaleb, S.M., Subramaniam, S., Zukarnain, Z.A., Muhammed, A.: Mobility management for IoT: a survey. EURASIP J. Wirel. Commun. Netw. 2016, 1–25 (2016)

    Article  Google Scholar 

  26. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: building an efficient and stable P2P DHT through increased memory and background overhead. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 160–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_15

    Chapter  Google Scholar 

  27. Gupta, R.K., Hada, R., Sudhir, S.: 2-tiered cloud based content delivery network architecture: an efficient load balancing approach for video streaming. In: 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 431–435 (2017). https://doi.org/10.1109/CSPC.2017.8305885

  28. Hassanzadeh-Nazarabadi, Y., Boshrooyeh, S.T., Otoum, S., Ucar, S., Özkasap, Ö.: DHT-based communications survey: architectures and use cases. CoRR abs/2109.10787 (2021). arxiv.org/abs/2109.10787

  29. Hassanzadeh-Nazarabadi, Y., Küpçü, A., Özkasap, Ö.: Interlaced: fully decentralized churn stabilization for skip graph-based DHTs. J. Parallel Distrib. Comput. 149, 13–28 (2021)

    Article  Google Scholar 

  30. Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed object location in a dynamic network. Theory Comput. Syst. 37(3), 405–440 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electron. Commun. Japan (Part III: Fundam. Electron. Sci.) 72(9), 56–64 (1989)

    Google Scholar 

  32. Jastaniah, K., Zhang, N., Mustafa, M.A.: Efficient privacy-friendly and flexible IoT data aggregation with user-centric access control. arXiv preprint arXiv:2203.00465 (2022)

  33. Kaashoek, M.F., Karger, D.R.: Koorde: a simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_9

    Chapter  Google Scholar 

  34. Kamel, M.B., Ligeti, P., Reich, C.: Lamred: location-aware and decentralized multi-layer resource discovery for IoT. Acta Cybernet. 25(2), 319–349 (2021)

    Article  Google Scholar 

  35. Karagiannis, V.: Compute node communication in the fog: survey and research challenges. In: Proceedings of the Workshop on Fog Computing and the IoT, pp. 36–40 (2019)

    Google Scholar 

  36. Karras, A., Karras, C., Giotopoulos, K.C., Tsolis, D., Oikonomou, K., Sioutas, S.: Peer to peer federated learning: towards decentralized machine learning on edge devices. In: 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), pp. 1–9 (2022). https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932980

  37. Karras, A., Karras, C., Giotopoulos, K.C., Tsolis, D., Oikonomou, K., Sioutas, S.: Federated edge intelligence and edge caching mechanisms. Information 14(7) (2023). https://doi.org/10.3390/info14070414. https://www.mdpi.com/2078-2489/14/7/414

  38. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2020)

    Google Scholar 

  39. Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-to-peer and cloud computing for massively multiuser online games. Peer-to-Peer Network. Appl. 8, 301–319 (2015)

    Article  Google Scholar 

  40. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 163–170. ACM (2000)

    Google Scholar 

  41. Kleinberg, J.M.: Navigation in a small world. Nature 406(6798), 845 (2000)

    Article  Google Scholar 

  42. Klophaus, R.: Riak core: building distributed applications without shared state. In: ACM SIGPLAN Commercial Users of Functional Programming, CUFP 2010. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1900160.1900176

  43. Kuhn, E., Mordinyi, R., Goiss, H.D., Bessler, S., Tomic, S.: A P2P network of space containers for efficient management of spatial-temporal data in intelligent transportation scenarios. In: 2009 Eighth International Symposium on Parallel and Distributed Computing, pp. 218–225 (2009). https://doi.org/10.1109/ISPDC.2009.27

  44. Kumar, R., Marchang, N., Tripathi, R.: Distributed off-chain storage of patient diagnostic reports in healthcare system using IPFS and blockchain. In: 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 1–5 (2020). https://doi.org/10.1109/COMSNETS48256.2020.9027313

  45. Li, T., et al. ZHT: a light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787. IEEE (2013)

    Google Scholar 

  46. Liu, J.N., Weng, J., Yang, A., Chen, Y., Lin, X.: Enabling efficient and privacy-preserving aggregation communication and function query for fog computing-based smart grid. IEEE Trans. Smart Grid 11(1), 247–257 (2019)

    Article  Google Scholar 

  47. Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.Y., Zhao, J.: Privacy-preserving aggregation in federated learning: a survey. IEEE Trans. Big Data (2022)

    Google Scholar 

  48. Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.: Privacy-preserving IoT data aggregation based on blockchain and homomorphic encryption. Sensors 21(7), 2452 (2021)

    Article  Google Scholar 

  49. Manku, G.S., Bawa, M., Raghavan, P., et al.: Symphony: distributed hashing in a small world. In: USENIX Symposium on Internet Technologies and Systems, p. 10 (2003)

    Google Scholar 

  50. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  51. Micheloni, A., Fuchs, K.P., Herrmann, D., Federrath, H.: Laribus: privacy-preserving detection of fake SSL certificates with a social P2P notary network. In: 2013 International Conference on Availability, Reliability and Security, pp. 1–10. IEEE (2013)

    Google Scholar 

  52. Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)

    Google Scholar 

  53. Nakagawa, I., et al.: DHT extension of m-cloud - scalable and distributed privacy preserving statistical computation on public cloud. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 3, pp. 682–683 (2015). https://doi.org/10.1109/COMPSAC.2015.94

  54. Nakayama, T., Asaka, T.: Peer-to-peer bidirectional streaming using mobile edge computing. In: 2017 Fifth International Symposium on Computing and Networking (CANDAR), pp. 263–266. IEEE (2017)

    Google Scholar 

  55. Name, A.: TomP2P, a P2P-based key-value pair storage library (2012). https://tomp2p.net/. Accessed: insert-the-date-you-accessed-the-website

  56. Napoli, A., et al.: Enabling router bypass and saving cost using point-to-multipoint transceivers for traffic aggregation. In: Optical Fiber Communication Conference, pp. W3F–5. Optica Publishing Group (2022)

    Google Scholar 

  57. Orda, L.D., Jensen, T.V., Gehrke, O., Bindner, H.W.: Efficient routing for overlay networks in a smart grid context. In: SMARTGREENS, pp. 131–136 (2019)

    Google Scholar 

  58. Peng, C., Luo, M., Wang, H., Khan, M.K., He, D.: An efficient privacy-preserving aggregation scheme for multidimensional data in IoT. IEEE Internet Things J. 9(1), 589–600 (2021)

    Article  Google Scholar 

  59. Petrasch, R., Hentschke, R.: Cloud storage hub: data management for IoT and industry 4.0 applications: towards a consistent enterprise information management system. In: 2016 Management and Innovation Technology International Conference (MITicon), pp. MIT-108–MIT-111 (2016). https://doi.org/10.1109/MITICON.2016.8025236

  60. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed environment. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1997, pp. 311–320. ACM, New York, NY, USA (1997). https://doi.org/10.1145/258492.258523

  61. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed environment. Theory Comput. Syst. 32(3), 241–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network (2001)

    Google Scholar 

  63. Ren, P., Liu, L., Qiao, X., Chen, J.: Distributed edge system orchestration for web-based mobile augmented reality services. IEEE Trans. Serv. Comput. 16(3), 1778–1792 (2023). https://doi.org/10.1109/TSC.2022.3190375

    Article  Google Scholar 

  64. Riabi, I., Saidane, L.A., Ayed, H.K.B.: A proposal of a distributed access control over fog computing: the its use case. In: 2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), pp. 1–7. IEEE (2017)

    Google Scholar 

  65. Rodrigues, A.S., Rizzetti, T.A., Canha, L.N., Milbradt, R.G., Appel, S.F., Duarte, Y.S.: Implementing a distributed firewall using a DHT network applied to smart grids. In: 2016 51st International Universities Power Engineering Conference (UPEC), pp. 1–5 (2016). https://doi.org/10.1109/UPEC.2016.8113985

  66. Roehrs, A., da Costa, C.A., da Rosa Righi, R.: OmniPHR: a distributed architecture model to integrate personal health records. J. Biomed. Inform. 71, 70–81 (2017)

    Google Scholar 

  67. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45518-3_18

    Chapter  Google Scholar 

  68. Saberi, M.A., Adda, M., Mcheick, H.: Break-glass conceptual model for distributed EHR management system based on blockchain, IPFS and ABAC. Procedia Comput. Sci. 198, 185–192 (2022). https://doi.org/10.1016/j.procs.2021.12.227. https://www.sciencedirect.com/science/article/pii/S1877050921024662. 12th International Conference on Emerging Ubiquitous Systems and Pervasive Networks/11th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare

  69. Saeed, W., Ahmad, Z., Jehangiri, A.I., Mohamed, N., Umar, A.I., Ahmad, J.: A fault tolerant data management scheme for healthcare internet of things in fog computing. KSII Trans. Internet Inf. Syst. (TIIS) 15(1), 35–57 (2021)

    Google Scholar 

  70. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards dynamic fog resource provisioning for smart city applications. In: 2018 14th International Conference on Network and Service Management (CNSM), pp. 290–294. IEEE (2018)

    Google Scholar 

  71. Sharma, R., Chan, C.A., Leckie, C.: Evaluation of centralised vs distributed collaborative intrusion detection systems in multi-access edge computing. In: 2020 IFIP Networking Conference (Networking), pp. 343–351. IEEE (2020)

    Google Scholar 

  72. Siddula, M., Li, L., Li, Y.: An empirical study on the privacy preservation of online social networks. IEEE Access 6, 19912–19922 (2018)

    Article  Google Scholar 

  73. Simić, M., Stojkov, M., Sladić, G., Milosavljević, B.: Edge computing system for large-scale distributed sensing systems. In: ICIST, pp. 36–39 (2018)

    Google Scholar 

  74. Sonbol, K., Özkasap, Ö., Al-Oqily, I., Aloqaily, M.: EdgeKV: decentralized, scalable, and consistent storage for the edge. J. Parallel Distrib. Comput. 144, 28–40 (2020)

    Article  Google Scholar 

  75. Song, J., Gu, T., Ge, Y., Mohapatra, P.: Smart contract-based computing resources trading in edge computing. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–7. IEEE (2020)

    Google Scholar 

  76. Stevens, M.M.J., et al.: Attacks on hash functions and applications. Mathematical Institute, Faculty of Science, Leiden University (2012)

    Google Scholar 

  77. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev. 31, 149–160 (2001). https://doi.org/10.1145/964723.383071

  78. Tanenbaum, A.S., Steen, M.: Distributed systems [sl] (2007)

    Google Scholar 

  79. Tanganelli, G., Vallati, C., Mingozzi, E.: Edge-centric distributed discovery and access in the internet of things. IEEE Internet Things J. 5(1), 425–438 (2017)

    Article  Google Scholar 

  80. Tanganelli, G., Vallati, C., Mingozzi, E.: A fog-based distributed look-up service for intelligent transportation systems. In: 2017 IEEE 18th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6. IEEE (2017)

    Google Scholar 

  81. Tiendrebeogo, T.: A cloud computing system using virtual hyperbolic coordinates for services distribution. In: Zhang, Y., Peng, L., Youn, C.-H. (eds.) CloudComp 2015. LNICST, vol. 167, pp. 269–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38904-2_28

    Chapter  Google Scholar 

  82. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput. Surv. (CSUR) 47(1), 1–47 (2014)

    Article  Google Scholar 

  83. Tracey, D., Sreenan, C.: Using a DHT in a peer to peer architecture for the internet of things. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 560–565 (2019). https://doi.org/10.1109/WF-IoT.2019.8767261

  84. Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architectures, applications and abstractions. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 115–124. IEEE (2017)

    Google Scholar 

  85. Varvello, M., Azurmendi, I.Q., Nappa, A., Papadopoulos, P., Pestana, G., Livshits, B.: VPN0: a privacy-preserving decentralized virtual private network. arXiv preprint arXiv:1910.00159 (2019)

  86. Wang, C., Cai, Z., Li, Y.: Sustainable blockchain-based digital twin management architecture for IoT devices. IEEE Internet Things J. 10(8), 6535–6548 (2023). https://doi.org/10.1109/JIOT.2022.3153653

    Article  Google Scholar 

  87. Wu, T., Yeoh, P.L., Jourjon, G., Thilakarathna, K.: MapChain: a DHT-based dual-blockchain data structure for large-scale IoT systems. In: 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pp. 177–182 (2021). https://doi.org/10.1109/WF-IoT51360.2021.9595910

  88. Xie, X.L., Wang, Q., Wang, P.: Design of smart container cloud based on DHT. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 2971–2975 (2017). https://doi.org/10.1109/FSKD.2017.8393255

  89. Xiong, J., Li, F., Ma, J., Liu, X., Yao, Z., Chen, P.S.: A full lifecycle privacy protection scheme for sensitive data in cloud computing. Peer-to-Peer Network. Appl. 8, 1025–1037 (2015)

    Article  Google Scholar 

  90. Yang, Y., Zhang, L., Zhao, Y., Choo, K.K.R., Zhang, Y.: Privacy-preserving aggregation-authentication scheme for safety warning system in fog-cloud based VANET. IEEE Trans. Inf. Forensics Secur. 17, 317–331 (2022)

    Article  Google Scholar 

  91. Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

    Article  Google Scholar 

  92. Zave, P.: Using lightweight modeling to understand chord. ACM SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (2012)

    Article  Google Scholar 

  93. Zhang, H., Goel, A., Govindan, R.: Incrementally improving lookup latency in distributed hash table systems. SIGMETRICS Perform. Eval. Rev. 31(1), 114–125 (2003). https://doi.org/10.1145/885651.781042

  94. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. 22(1), 41–53 (2004)

    Article  Google Scholar 

  95. Zhaofeng, M., Xiaochang, W., Jain, D.K., Khan, H., Hongmin, G., Zhen, W.: A blockchain-based trusted data management scheme in edge computing. IEEE Trans. Industr. Inf. 16(3), 2013–2021 (2020). https://doi.org/10.1109/TII.2019.2933482

    Article  Google Scholar 

  96. Zhelev, R., Georgiev, V.: A DHT-based scalable and fault-tolerant cloud information service. UBICOMM 2011, 67 (2011)

    Google Scholar 

  97. Zhou, J., Fan, J., Jia, J.: A cost-efficient resource provisioning algorithm for DHT-based cloud storage systems. Concurrency Comput. Pract. Exp. 28(18), 4485–4506 (2016)

    Article  Google Scholar 

  98. Zhou, J., He, W.: A novel resource provisioning model for DHT-based cloud storage systems. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC 2014. LNCS, vol. 8707, pp. 257–268. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44917-2_22

    Chapter  Google Scholar 

  99. Zuo, X., Iamnitchi, A.: A survey of socially aware peer-to-peer systems. ACM Comput. Surv. (CSUR) 49(1), 1–28 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristeidis Karras .

Editor information

Editors and Affiliations

Appendix

Appendix

In the following section, all DHT-based algorithms and protocols are summarized. The table contains the name of each DHT solution, the size of each routing table, the lookup and delete key operations, the join and leave operations, as well as some comments per each method. This table serves as a concluding remark for our survey, as it presents all information gathered in one easy-to-read place.

Table 3. A comparison and overview of several DHTs.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karras, A., Karras, C., Schizas, N., Sioutas, S., Zaroliagis, C. (2024). Algorithmic Aspects of Distributed Hash Tables on Cloud, Fog, and Edge Computing Applications: A Survey. In: Chatzigiannakis, I., Karydis, I. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2023. Lecture Notes in Computer Science, vol 14053. Springer, Cham. https://doi.org/10.1007/978-3-031-49361-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49361-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49360-7

  • Online ISBN: 978-3-031-49361-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics