Skip to main content

Aircraft Cruise Alternative Trajectories Generation: A Mixed RRG-Clustering Approach

  • Conference paper
  • First Online:
Intelligent Transport Systems (INTSYS 2023)

Abstract

Weather obstacles in the airspace can interfere with an aircraft’s flight plan. Pilots, assisted by air traffic controllers (ATCs), perform avoidance maneuvers that can be optimized. This paper addresses the generation of alternative aircraft trajectories to resolve unexpected events. The authors propose a solution based on the RRG algorithm, K-means clustering, and Dynamic Time Warping (DTW) similarity metric to address the problem. The mixed algorithm succeeds in generating a set of paths with diversity in an obstacle constrained airspace between Paris-Toulouse and London-Toulouse airports. This tool could help to reduce the workload of pilots and ATCs when such a situation arises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mu (\mathopen {[}a1,b1\mathclose {]}\times \mathopen {[}a2,b2\mathclose {]})=(b1-a1)*(b2-a2)\) where \(b1>a1\) and \(b2>a2\).

    \(\mu (\mathopen {[}a1,b1\mathclose {]}\times \mathopen {[}a2,b2\mathclose {]}\times \mathopen {[}a3,b3\mathclose {]})=(b1-a1)*(b2-a2)*(b3-a3)\) where \(b1>a1\), \(b2>a2\) and \(b3>a3\).

  2. 2.

    In 2D space, \(\zeta _2\) is the surface of a disk of radius 1 (\(\zeta _2=\pi \)).

References

  1. Akgün, V., Erkut, E., Batta, R.: On finding dissimilar paths. Eur. J. Oper. Res. 121(2), 232–246 (2000)

    Article  MATH  Google Scholar 

  2. Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)

    Article  MATH  Google Scholar 

  3. Bonin, L., Delahaye, D., Guitart, A., Feron, E., Prats, X.: Optimal path planning for soaring flight. In: Conference on Guidance Navigation and control, CEAS EuroGNC 2022, Berlin, Germany, May 2022. CEAS and AIAA (2022). https://hal-enac.archives-ouvertes.fr/hal-03619377

  4. Chakravarty, A.: Four-dimensional fuel-optimal guidance in the presence of winds. J. Guid. Control. Dyn. 8(1), 16–22 (1985)

    Article  Google Scholar 

  5. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U.: Alternative routing: K-shortest paths with limited overlap. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2015, New York, NY, USA. Association for Computing Machinery (2015). https://doi.org/10.1145/2820783.2820858

  6. Cordis and CleanSky: Safency - the safe emergency trajectory generator (2020). https://cordis.europa.eu/project/id/864771/fr

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  8. ECMWF: ECMWF datasets (2020). https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets

  9. Fallast, A., Messnarz, B.: Automated trajectory generation and airport selection for an emergency landing procedure of a CS23 aircraft. CEAS Aeronaut. J. 8(3), 481–492 (2017)

    Article  Google Scholar 

  10. Gierens, K., Matthes, S., Rohs, S.: How well can persistent contrails be predicted? Aerospace 7(12), 169 (2020)

    Article  Google Scholar 

  11. Guitart, A., Delahaye, D., Feron, E.: An accelerated dual fast marching tree applied to emergency geometric trajectory generation. Aerospace 9(4), 180 (2022)

    Article  Google Scholar 

  12. Guitart, A., Delahaye, D., Camino, F.M., Feron, E.: Collaborative generation of local conflict free trajectories with weather hazards avoidance. IEEE Trans. Intell. Transp. Syst. 24, 12831–12842 (2023). https://doi.org/10.1109/TITS.2023.3289191

    Article  Google Scholar 

  13. Hu, X.-B., et al.: Finding the k shortest paths by ripple-spreading algorithms. Eng. Appl. Artif. Intell. 87, 103229 (2020)

    Article  Google Scholar 

  14. Irvine, E.A., Shine, K.P.: Ice supersaturation and the potential for contrail formation in a changing climate. Earth Syst. Dyn. 6(2), 555–568 (2015)

    Article  Google Scholar 

  15. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. arXiv arXiv:1306.3532, February 2015

  16. Jardin, M.R., Bryson, A.E.: Neighboring optimal aircraft guidance in winds. J. Guid. Control. Dyn. 24(4), 710–715 (2001)

    Article  Google Scholar 

  17. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. arXiv arXiv:1005.0416 (2010)

  18. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  19. LaValle, S.M.: Rapidly-exploring random trees : a new tool for path planning. The annual research report (1998)

    Google Scholar 

  20. Lee, D., et al.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021)

    Article  Google Scholar 

  21. Legrand, K., Puechmorel, S., Delahaye, D., Zhu, Y.: Robust aircraft optimal trajectory in the presence of wind. IEEE Aerosp. Electron. Syst. Mag. 33(11), 30–38 (2018)

    Article  Google Scholar 

  22. Ligny, L., Guitart, A., Delahaye, D., Sridhar, B.: Aircraft emergency trajectory design: a fast marching method on a triangular mesh. In: Fourteenth USA/Europe Air Traffic Management Research and Development Seminar, New-Orleans, United States (2021)

    Google Scholar 

  23. Liu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k shortest paths with diversity. IEEE Trans. Knowl. Data Eng. 30(3), 488–502 (2017)

    Article  Google Scholar 

  24. Palopo, K., Windhorst, R.D., Suharwardy, S., Lee, H.-T.: Wind-optimal routing in the national airspace system. J. Aircr. 47(5), 1584–1592 (2010)

    Article  Google Scholar 

  25. Sáez, R., Khaledian, H., Prats, X.: Generation of emergency trajectories based on aircraft trajectory prediction. In: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2021)

    Google Scholar 

  26. Sáez, R., Khaledian, H., Prats, X., Guitart, A., Delahaye, D., Feron, E.: A fast and flexible emergency trajectory generator enhancing emergency geometric planning with aircraft dynamics. In: Fourteenth USA/Europe Air Traffic Management Research and Development Seminar, ATM 2021, New Orleans (virtual), United States, September 2021 (2021)

    Google Scholar 

  27. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. 98(20), 11069–11074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sáez, R., et al.: An automated emergency airport and off-airport landing site selector. In: 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pp. 1–10 (2022). https://doi.org/10.1109/DASC55683.2022.9925757

  30. Soler, M., Zou, B., Hansen, M.: Flight trajectory design in the presence of contrails: application of a multiphase mixed-integer optimal control approach. Transp. Res. Part C Emerg. Technol. 48, 172–194 (2014)

    Article  Google Scholar 

  31. Talarico, L., Sörensen, K., Springael, J.: The k-dissimilar vehicle routing problem. Eur. J. Oper. Res. 244(1), 129–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11), 712–716 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréas Guitart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebegue, JC., Guitart, A., Demouge, C., Delahaye, D., Hoekstra, J., Feron, E. (2024). Aircraft Cruise Alternative Trajectories Generation: A Mixed RRG-Clustering Approach. In: Martins, A.L., Ferreira, J.C., Kocian, A., Tokkozhina, U., Helgheim, B.I., Bråthen, S. (eds) Intelligent Transport Systems. INTSYS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 540. Springer, Cham. https://doi.org/10.1007/978-3-031-49379-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49379-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49378-2

  • Online ISBN: 978-3-031-49379-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics