Abstract
The computational capabilities of coupled nonlinear oscillators in implementing computational systems are discussed. A Kuramoto-type, locally coupled Adler oscillator is analyzed in terms of its emergent behaviours. Despite the local nature of the interactions, the model exhibits a wide range of long-time dynamics, spanning from stationary global phase synchronization (coherence) to more sophisticated long-range long-lived structures. Regions of non-trivial complex behaviour are identified through entropic analysis of space-time diagrams. Computational complexity is discussed regarding entropic measures, and its behaviour in parameter space is studied. Evidence of an enhancement in computational capabilities in the vicinity of highly sensitive regimes points to critical behaviour, which could be further exploited in implementing dedicated computational electronic systems.
Supported by The Alexander von Humboldt Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As implemented in GNU Scientific Library (GSL).
References
Adler, R.: A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973)
Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: levels of entropy convergence regularities unseen, randomness observed: levels of entropy convergence, vol. 25 (2013)
Culik, K., Yu, S.: Undecidability of ca classification schemes. Complex Syst. 2, 177–190 (1988)
Estevez, E., Estevez, D., Garcia, K., Lora, R.: Computational capabilities at the edge of chaos for one dimensional systems undergoing continuous transitions. Chaos 29, 043105 (2019)
Estevez-Moya, E., Estevez-Rams, E., Kantz, H.: Complexity and transition to chaos in coupled adler-type oscillators. Phys. Rev. E 107, 004212 (2023)
Estevez-Rams, E., Estevez-Moya, D., Aragón-Fernández, B.: Phenomenology of coupled nonlinear oscillators. Chaos 28, 023110–023121 (2018)
Estevez-Rams, E., Lora-Serrano, R., Nunes, C.A.J., Aragón-Fernández, B.A.: Lempel-Ziv complexity analysis of one dimensional cellular automata. Chaos 25, 123106–123116 (2015)
García-Medina, K., Estevez-Rams, E.: Behavior of circular chains of nonlinear oscillators with kuramoto-like local coupling. AIP Adv. 13, 035222 (2023)
García-Medina, K., Estevez-Moya, D., Estevez-Rams, E.: Stability and transition in continuously deformed cellular automata. Revista Cubana de Física 37 (2020)
Grassberger, P.: Towards a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25, 907–938 (1986)
Kuramoto, Y.K.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (eds.) International Symposium on Mathematical Problems in Theoretical Physics. LNP, vol. 39, pp. 420–422. Springer, Berlin, Heidelberg (1975). https://doi.org/10.1007/BFb0013365
Kuramoto, Y.K.: Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics, vol. 19, pp. 110–140. Springer, Berlin, Heidelberg (1984). https://doi.org/10.1007/978-3-642-69689-3_7
Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Application to Living Systems, pp. 15–42. World Scientific, Singapore (2006)
Shannon, C., Weaver, W.: The Mathematical Theory of Communication. The Mathematical Theory of Communication, University of Illinois Press (1962)
Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)
Wiener, N.: Nonlinear Problems in Random Theory, p. 509. MIT Press, MA (1958)
Wiener, N.: Cybernetics, p. 509, 2nd edn. MIT Press, Cambridge, MA (1961)
Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)
Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35 (1984)
Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign, Illinois (2002)
Zillmer, R., Livi, R., Politi, A., Torcini, A.: Desynchronization in diluted neural networks. Phys. Rev. E 74 (2006)
Acknowledgments
The authors thank Alexander von Humboldt Stiftung for financial support and the KIT for a great working environment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
García Medina, K., Beltrán, J.L., Estevez-Rams, E., Kunka, D. (2024). Computational Capabilities of Adler Oscillators Under Weak Local Kuramoto-Like Coupling. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-49552-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49551-9
Online ISBN: 978-3-031-49552-6
eBook Packages: Computer ScienceComputer Science (R0)