Skip to main content

Computational Capabilities of Adler Oscillators Under Weak Local Kuramoto-Like Coupling

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14335))

  • 346 Accesses

Abstract

The computational capabilities of coupled nonlinear oscillators in implementing computational systems are discussed. A Kuramoto-type, locally coupled Adler oscillator is analyzed in terms of its emergent behaviours. Despite the local nature of the interactions, the model exhibits a wide range of long-time dynamics, spanning from stationary global phase synchronization (coherence) to more sophisticated long-range long-lived structures. Regions of non-trivial complex behaviour are identified through entropic analysis of space-time diagrams. Computational complexity is discussed regarding entropic measures, and its behaviour in parameter space is studied. Evidence of an enhancement in computational capabilities in the vicinity of highly sensitive regimes points to critical behaviour, which could be further exploited in implementing dedicated computational electronic systems.

Supported by The Alexander von Humboldt Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As implemented in GNU Scientific Library (GSL).

References

  1. Adler, R.: A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973)

    Article  Google Scholar 

  2. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: levels of entropy convergence regularities unseen, randomness observed: levels of entropy convergence, vol. 25 (2013)

    Google Scholar 

  3. Culik, K., Yu, S.: Undecidability of ca classification schemes. Complex Syst. 2, 177–190 (1988)

    MathSciNet  Google Scholar 

  4. Estevez, E., Estevez, D., Garcia, K., Lora, R.: Computational capabilities at the edge of chaos for one dimensional systems undergoing continuous transitions. Chaos 29, 043105 (2019)

    Article  MathSciNet  Google Scholar 

  5. Estevez-Moya, E., Estevez-Rams, E., Kantz, H.: Complexity and transition to chaos in coupled adler-type oscillators. Phys. Rev. E 107, 004212 (2023)

    Article  MathSciNet  Google Scholar 

  6. Estevez-Rams, E., Estevez-Moya, D., Aragón-Fernández, B.: Phenomenology of coupled nonlinear oscillators. Chaos 28, 023110–023121 (2018)

    Article  MathSciNet  Google Scholar 

  7. Estevez-Rams, E., Lora-Serrano, R., Nunes, C.A.J., Aragón-Fernández, B.A.: Lempel-Ziv complexity analysis of one dimensional cellular automata. Chaos 25, 123106–123116 (2015)

    Google Scholar 

  8. García-Medina, K., Estevez-Rams, E.: Behavior of circular chains of nonlinear oscillators with kuramoto-like local coupling. AIP Adv. 13, 035222 (2023)

    Article  Google Scholar 

  9. García-Medina, K., Estevez-Moya, D., Estevez-Rams, E.: Stability and transition in continuously deformed cellular automata. Revista Cubana de Física 37 (2020)

    Google Scholar 

  10. Grassberger, P.: Towards a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25, 907–938 (1986)

    Article  MathSciNet  Google Scholar 

  11. Kuramoto, Y.K.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (eds.) International Symposium on Mathematical Problems in Theoretical Physics. LNP, vol. 39, pp. 420–422. Springer, Berlin, Heidelberg (1975). https://doi.org/10.1007/BFb0013365

  12. Kuramoto, Y.K.: Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics, vol. 19, pp. 110–140. Springer, Berlin, Heidelberg (1984). https://doi.org/10.1007/978-3-642-69689-3_7

  13. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Application to Living Systems, pp. 15–42. World Scientific, Singapore (2006)

    Google Scholar 

  14. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. The Mathematical Theory of Communication, University of Illinois Press (1962)

    Google Scholar 

  15. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    Google Scholar 

  16. Wiener, N.: Nonlinear Problems in Random Theory, p. 509. MIT Press, MA (1958)

    Google Scholar 

  17. Wiener, N.: Cybernetics, p. 509, 2nd edn. MIT Press, Cambridge, MA (1961)

    Google Scholar 

  18. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  19. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  20. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign, Illinois (2002)

    Google Scholar 

  21. Zillmer, R., Livi, R., Politi, A., Torcini, A.: Desynchronization in diluted neural networks. Phys. Rev. E 74 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors thank Alexander von Humboldt Stiftung for financial support and the KIT for a great working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Beltrán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García Medina, K., Beltrán, J.L., Estevez-Rams, E., Kunka, D. (2024). Computational Capabilities of Adler Oscillators Under Weak Local Kuramoto-Like Coupling. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics