Skip to main content

Evaluation of XAI Methods in a FinTech Context

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Abstract

As humans, we automate more and more critical areas of our lives while using machine learning algorithms to make autonomous decisions. For example, these algorithms may approve or reject job applications/loans. To ensure the fairness and reliability of the decision-making process, a validation is required. The solution for explaining the decision process of ML models is Explainable Artificial Intelligence (XAI). In this paper, we evaluate four different XAI approaches - LIME, SHAP, CIU, and Integrated Gradients (IG) - based on the similarity of their explanations. We compare their feature importance values (FIV) and rank the approaches from the most trustworthy to the least trustworthy. This ranking can serve as a specific fidelity measure of the explanations provided by the XAI methods.

This work is supported with tax funds on the basis of the budget passed by the Saxon State Parliament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amro, B., Najjar, A., Macido, M.: An intelligent decision support system for recruitment: resumes screening and applicants ranking (2022)

    Google Scholar 

  2. Anjomshoae, S., Kampik, T., Främling, K.: Py-CIU: a python library for explaining machine learning predictions using contextual importance and utility. In: IJCAI-PRICAI 2020 Workshop on Explainable Artificial Intelligence (XAI) (2020)

    Google Scholar 

  3. Anshari, M., Almunawar, M.N., Masri, M., Hrdy, M.: Financial technology with AI-enabled and ethical challenges. Society 58(3), 189–195 (2021). https://doi.org/10.1007/s12115-021-00592-w

    Article  Google Scholar 

  4. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. CoRR abs/1909.03012 (2019). http://arxiv.org/abs/1909.03012

  5. Bruckert, S., Finzel, B., Schmid, U.: The next generation of medical decision support: a roadmap toward transparent expert companions. Front. Artif. Intell. 3, 507973 (2020)

    Article  Google Scholar 

  6. Cortinhas, S.: Credit card approvals (clean data) from kaggle (2022). https://www.kaggle.com/datasets/samuelcortinhas/credit-card-approval-clean-data. Accessed 16 Apr 2023

  7. Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (XAI): a survey (2020). https://doi.org/10.48550/ARXIV.2006.11371. https://arxiv.org/abs/2006.11371

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml. Accessed 16 Apr 2023

  9. Främling, K.: Decision theory meets explainable AI. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_4

    Chapter  Google Scholar 

  10. Främling, K.: Explainable AI without interpretable model. CoRR abs/2009.13996 (2020). https://arxiv.org/abs/2009.13996

  11. Främling, K.: Contextual importance and utility: a theoretical foundation. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 117–128. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_10

    Chapter  Google Scholar 

  12. Guo, H., Polak, P.: Artificial intelligence and financial technology FinTech: how AI is being used under the pandemic in 2020. In: Hamdan, A., Hassanien, A.E., Razzaque, A., Alareeni, B. (eds.) The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success. SCI, vol. 935, pp. 169–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62796-6_9

    Chapter  Google Scholar 

  13. Kaur, C., Garg, U.: Artificial intelligence techniques for cancer detection in medical image processing: a review. Mater. Today Proc. 81, 806–809 (2021)

    Article  Google Scholar 

  14. Klaise, J., Looveren, A.V., Vacanti, G., Coca, A.: Alibi explain: algorithms for explaining machine learning models. J. Mach. Learn. Res. 22(181), 1–7 (2021). http://jmlr.org/papers/v22/21-0017.html

  15. Liao, Q.V., Singh, M., Zhang, Y., Bellamy, R.: Introduction to explainable AI. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–3 (2021)

    Google Scholar 

  16. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 4768–4777. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  17. Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55, 3503–3568 (2021)

    Article  Google Scholar 

  18. Molnar, C.: Interpretable machine learning (2022). https://christophm.github.io/interpretable-ml-book/. Accessed 16 Apr 2023

  19. Reddy, S., Allan, S., Coghlan, S., Cooper, P.: A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 27(3), 491–497 (2020)

    Article  Google Scholar 

  20. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 1135–1144. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939778

  21. Speith, T.: A review of taxonomies of explainable artificial intelligence (XAI) methods. In: 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 2239–2250 (2022)

    Google Scholar 

  22. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 3319–3328. JMLR.org (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falko Gawantka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gawantka, F., Just, F., Ullrich, M., Savelyeva, M., Lässig, J. (2024). Evaluation of XAI Methods in a FinTech Context. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics