Abstract
Aspect-based sentiment analysis is the task of monitoring user sentiment on textual opinions about the characteristics of a given entity. Recognizing the aspects present in the opinion and determining its sentimental orientation (positive or negative) in a similar way as if it were done by a human being continues to be a challenging task, but at the same time necessary. Achieving quality improvement of existing aspect-based sentiment analysis solutions remains a challenge and the vast majority of solutions reported in this task are focused on the English language, so further progress is needed in languages like Spanish. This paper presents an aspect-based sentiment analysis method which uses language models based on Transformers (BERT models) with a linear layer to extract aspects from opinions in Spanish and a similar model to perform Aspect Sentiment Classification, demonstrating that its use allows us to surpass the state of the art for said language. The proposed solution was evaluated using the Semeval2016 Task 5 dataset achieving promising results, respect those reported by other solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Miranda, C.H., Buelvas, E.: AspectSA: Unsupervised system for aspect-based sentiment analysis in Spanish. Prospectiva 17, 87–95 (2019)
Mohammadreza, S., Khoshavi, N., Baraani-Dastjerdi, A.: Language-independent method for aspect-based sentiment analysis. IEEE Access 8, 31034–31044 (2020)
García, S.R.: Minería de textos y análisis de sentimientos en sanidadysalud.com, Tesis de Master en Minería de Datos e Inteligencia de Negocios, Universidad Complutense de Madrid, Madrid (2016)
Aboelela, E.M., Gad, W., Ismail, R.: The impact of semantics on aspect level opinion mining. PeerJ Comput. Sci. 7, e558 (2021)
Ambreen, N., Yuan, R., Wu, L., Ling, S.: Issues and challenges of aspect-based sentiment analysis: a comprehensive survey. IEEE Trans. Affect. Comput. 13, 845–863 (2020)
Li, X., Bing, L., Zhang, W., Lam, W.: Exploiting BERT for end-to-end aspect-based sentiment analysis. In: Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pp. 34–41 (2019)
Abdelgwad, M.M., Soliman, T.H.A., Taloba, A.I.: Arabic aspect sentiment polarity classification using BERT, arXiv:2107.13290v4 (2023)
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)
Liu, N., Shen, B., Zhang, Z., Zhang, Z., Mi, K.: Attention-based sentiment reasoner for aspect-based sentiment analysis. Hum.-Centric Comput. Inform. Sci. 9, 1–17 (2019)
Karimi, A., Rossi, L., Prati, A.: Improving BERT performance for aspect-based sentiment analysis. In: Proceedings of the 4th International Conference on Natural Language and Speech Processing (ICNLSP 2021), pp. 39–46 (2021)
Minh Hieu, P., Ogunbona, P.O.: Modelling context and syntactical features for aspect-based sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3211–3220 (2020)
López Ramos, D., Arco García, L.: Deep learning for aspect extraction in textual opinions. Revista Cubana de Ciencias Informáticas 13(2), 105–145 (2019)
Liu, N., Shen, B., Zhang, Z., Zhang, Z., Mi, K.: Attention-based sentiment reasoner for aspect-based sentiment analysis. Hum.-Centric Comput. Inf. Sci. 9, 35 (2019)
Jangid, H., Singhal, S., Rajiv Ratn, S., Zimmermann, R.: Aspect-based financial sentiment analysis using deep learning. In: Proceedings of WWW ‘18: Companion Proceedings of the The Web Conference 2018, pp. 1961–1966 (2018)
Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. The Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)
Mohammadi, A., Shaverizade, A.: Ensemble deep learning for aspect-based sentiment analysis. Int. J. Nonlinear Anal. Appl. 12(Special Issue), 29–38 (2021)
Pathan, A.F., Prakash, Ch.: Cross-domain aspect detection and categorization using machine learning for aspect-based opinion mining. Int. J. Inf. Manag. Data Insights 2(2), 100099 (2022)
Sivakumar, M., Uyyala, S.R.: Aspect-based sentiment analysis of mobile phone reviews using LSTM and fuzzy logic. Int. J. Data Sci. Analytics 12, 355–367 (2021)
Afzaal, M., Usman, M., Fong, A.C.M., Fong, S., Zhuang, Y.: Fuzzy aspect based opinion classification system for mining tourist reviews. Adv. Fuzzy Syst. 2016, 1–14 (2016)
Karimi, A., Rossi, L., Prati, A.: Improving BERT performance for aspect-based sentiment analysis. Int. J. Intell. Netw. (2021)
Abdelgwad, M.M., Soliman, T.H.A., Taloba, A.I.: Arabic aspect sentiment polarity classification using BERT. J. Big Data 9, 115 (2022)
Pang, G., Lu, K., Zhu, X., He, J., Mo, Z., Peng, Z., et al.: Aspect-level sentiment analysis approach via bert and aspect feature location model. Wireless Commun. Mob. Comput. 2021, 1–13 (2021)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Rosa, J.d.l., Ponferrada, E.G., Villegas, P., González de Prado Salas, P., Romero, M., Grandury, M.: BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling. arXiv:2207.06814 (2022)
Martínez-Seis, B.C., Pichardo-Lagunas, O., Miranda, S., Pérez-Cázares, I.-J., Rodríguez-González, J.-A.: Deep learning approach for aspect-based sentiment analysis of restaurants reviews in Spanish. Computación y Sistemas 26(2), 899–908 (2022)
Acknowledgments
This work has been partially supported by FEDER and the State Research Agency (AEI) of the Spanish Ministry of Economy and Competition under grant SAFER: PID2019-104735RB-C42 (AEI/FEDER, UE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Montañez Castelo, P., Simón-Cuevas, A., Olivas, J.A., Romero, F.P. (2024). Enhancing Spanish Aspect-Based Sentiment Analysis Through Deep Learning Approach. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-49552-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49551-9
Online ISBN: 978-3-031-49552-6
eBook Packages: Computer ScienceComputer Science (R0)