Skip to main content

Enhancing Spanish Aspect-Based Sentiment Analysis Through Deep Learning Approach

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Abstract

Aspect-based sentiment analysis is the task of monitoring user sentiment on textual opinions about the characteristics of a given entity. Recognizing the aspects present in the opinion and determining its sentimental orientation (positive or negative) in a similar way as if it were done by a human being continues to be a challenging task, but at the same time necessary. Achieving quality improvement of existing aspect-based sentiment analysis solutions remains a challenge and the vast majority of solutions reported in this task are focused on the English language, so further progress is needed in languages like Spanish. This paper presents an aspect-based sentiment analysis method which uses language models based on Transformers (BERT models) with a linear layer to extract aspects from opinions in Spanish and a similar model to perform Aspect Sentiment Classification, demonstrating that its use allows us to surpass the state of the art for said language. The proposed solution was evaluated using the Semeval2016 Task 5 dataset achieving promising results, respect those reported by other solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miranda, C.H., Buelvas, E.: AspectSA: Unsupervised system for aspect-based sentiment analysis in Spanish. Prospectiva 17, 87–95 (2019)

    Article  Google Scholar 

  2. Mohammadreza, S., Khoshavi, N., Baraani-Dastjerdi, A.: Language-independent method for aspect-based sentiment analysis. IEEE Access 8, 31034–31044 (2020)

    Article  Google Scholar 

  3. García, S.R.: Minería de textos y análisis de sentimientos en sanidadysalud.com, Tesis de Master en Minería de Datos e Inteligencia de Negocios, Universidad Complutense de Madrid, Madrid (2016)

    Google Scholar 

  4. Aboelela, E.M., Gad, W., Ismail, R.: The impact of semantics on aspect level opinion mining. PeerJ Comput. Sci. 7, e558 (2021)

    Article  Google Scholar 

  5. Ambreen, N., Yuan, R., Wu, L., Ling, S.: Issues and challenges of aspect-based sentiment analysis: a comprehensive survey. IEEE Trans. Affect. Comput. 13, 845–863 (2020)

    Google Scholar 

  6. Li, X., Bing, L., Zhang, W., Lam, W.: Exploiting BERT for end-to-end aspect-based sentiment analysis. In: Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pp. 34–41 (2019)

    Google Scholar 

  7. Abdelgwad, M.M., Soliman, T.H.A., Taloba, A.I.: Arabic aspect sentiment polarity classification using BERT, arXiv:2107.13290v4 (2023)

  8. Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)

    Google Scholar 

  9. Liu, N., Shen, B., Zhang, Z., Zhang, Z., Mi, K.: Attention-based sentiment reasoner for aspect-based sentiment analysis. Hum.-Centric Comput. Inform. Sci. 9, 1–17 (2019)

    Google Scholar 

  10. Karimi, A., Rossi, L., Prati, A.: Improving BERT performance for aspect-based sentiment analysis. In: Proceedings of the 4th International Conference on Natural Language and Speech Processing (ICNLSP 2021), pp. 39–46 (2021)

    Google Scholar 

  11. Minh Hieu, P., Ogunbona, P.O.: Modelling context and syntactical features for aspect-based sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3211–3220 (2020)

    Google Scholar 

  12. López Ramos, D., Arco García, L.: Deep learning for aspect extraction in textual opinions. Revista Cubana de Ciencias Informáticas 13(2), 105–145 (2019)

    Google Scholar 

  13. Liu, N., Shen, B., Zhang, Z., Zhang, Z., Mi, K.: Attention-based sentiment reasoner for aspect-based sentiment analysis. Hum.-Centric Comput. Inf. Sci. 9, 35 (2019)

    Article  Google Scholar 

  14. Jangid, H., Singhal, S., Rajiv Ratn, S., Zimmermann, R.: Aspect-based financial sentiment analysis using deep learning. In: Proceedings of WWW ‘18: Companion Proceedings of the The Web Conference 2018, pp. 1961–1966 (2018)

    Google Scholar 

  15. Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. The Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  16. Mohammadi, A., Shaverizade, A.: Ensemble deep learning for aspect-based sentiment analysis. Int. J. Nonlinear Anal. Appl. 12(Special Issue), 29–38 (2021)

    Google Scholar 

  17. Pathan, A.F., Prakash, Ch.: Cross-domain aspect detection and categorization using machine learning for aspect-based opinion mining. Int. J. Inf. Manag. Data Insights 2(2), 100099 (2022)

    Google Scholar 

  18. Sivakumar, M., Uyyala, S.R.: Aspect-based sentiment analysis of mobile phone reviews using LSTM and fuzzy logic. Int. J. Data Sci. Analytics 12, 355–367 (2021)

    Article  Google Scholar 

  19. Afzaal, M., Usman, M., Fong, A.C.M., Fong, S., Zhuang, Y.: Fuzzy aspect based opinion classification system for mining tourist reviews. Adv. Fuzzy Syst. 2016, 1–14 (2016)

    Article  Google Scholar 

  20. Karimi, A., Rossi, L., Prati, A.: Improving BERT performance for aspect-based sentiment analysis. Int. J. Intell. Netw. (2021)

    Google Scholar 

  21. Abdelgwad, M.M., Soliman, T.H.A., Taloba, A.I.: Arabic aspect sentiment polarity classification using BERT. J. Big Data 9, 115 (2022)

    Article  Google Scholar 

  22. Pang, G., Lu, K., Zhu, X., He, J., Mo, Z., Peng, Z., et al.: Aspect-level sentiment analysis approach via bert and aspect feature location model. Wireless Commun. Mob. Comput. 2021, 1–13 (2021)

    Google Scholar 

  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  24. Rosa, J.d.l., Ponferrada, E.G., Villegas, P., González de Prado Salas, P., Romero, M., Grandury, M.: BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling. arXiv:2207.06814 (2022)

  25. Martínez-Seis, B.C., Pichardo-Lagunas, O., Miranda, S., Pérez-Cázares, I.-J., Rodríguez-González, J.-A.: Deep learning approach for aspect-based sentiment analysis of restaurants reviews in Spanish. Computación y Sistemas 26(2), 899–908 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by FEDER and the State Research Agency (AEI) of the Spanish Ministry of Economy and Competition under grant SAFER: PID2019-104735RB-C42 (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Simón-Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montañez Castelo, P., Simón-Cuevas, A., Olivas, J.A., Romero, F.P. (2024). Enhancing Spanish Aspect-Based Sentiment Analysis Through Deep Learning Approach. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics