Abstract
The global Consumer Price Index (CPI) is a monthly multivariate time series, which allows measuring the variation of the final consumer prices of a given set of goods and services of households living in a given geographic region, city or country. The present work addresses the problem of the multivariate time series database of Cuba’s CPI and a respective forecasting model based on Vector Autoregressive to establish a baseline for this dataset. An statistical analysis of the data will allow characterizing each variable of the series in terms of relevance to the multivariate problem, its causal relationships and the respective stationary analysis to evaluate the best lag to be considered in the forecasting model. The main statistics evidences of each test were reported in the paper as starting point for futures researches in the field of deep learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akin, A.C., Cevrimli, M.B., Arikan, M.S., Tekindal, M.A.: Determination of the causal relationship between beef prices and the consumer price index in turkey. Turk. J. Vet. Anim. Sci. 43(3), 353–358 (2019)
Banerjee, A.: Forecasting price levels in India-an Arima framework. Acad. Mark. Stud. J. 25(1), 1–15 (2021)
Cheung, Y.-W., Lai, K.S.: Lag order and critical values of the augmented dickey-fuller test. J. Bus. Econ. Stat. 13(3), 277–280 (1995)
Cromwell, J.B.: Multivariate Tests for Time Series Models. Number 100. Sage (1994)
Diewert, W.E.: Index number issues in the consumer price index. J. Econ. Perspect. 12(1), 47–58 (1998)
García Molina, J.M.: La economía cubana a inicios del siglo XXI: desafíos y oportunidades de la globalización. CEPAL (2005)
Ghazo, A., et al.: Applying the ARIMA model to the process of forecasting GDP and CPI in the Jordanian economy. Int. J. Financ. Res. 12(3), 70 (2021)
Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econom.: J. Econom. Soc. 424–438 (1969)
Jere, S., Banda, A., Chilyabanyama, R., Moyo, E., et al.: Modeling consumer price index in Zambia: a comparative study between multicointegration and ARIMA approach. Open J. Stat. 9(02), 245 (2019)
Korkmaz, S., Abdullazade, M.: The causal relationship between unemployment and inflation in g6 countries. Adv. Econ. Bus. 8(5), 303–309 (2020)
Anaya, L.M.L., Moreno, V.M.L., Aguirre, H.R.O., López, M.Q.: Predicción del ipc mexicano combinando modelos econométricos e inteligencia artificial. Rev. Mexicana Econ. Finanzas 13(4), 603–629 (2018)
Mallick, L., Behera, S.R., Dash, D.P.: Does CPI granger cause WPI? Empirical evidence from threshold cointegration and spectral granger causality approach in India. J. Dev. Areas 54(2) (2020)
Manik, D.P., et al.: A strategy to create daily consumer price index by using big data in statistics Indonesia. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1–5. IEEE (2015)
Mohamed, J.: Time series modeling and forecasting of Somaliland consumer price index: a comparison of ARIMA and regression with ARIMA errors. Am. J. Theor. Appl. Stat. 9(4), 143–53 (2020)
Nakamura, E., Steinsson, J.: Identification in macroeconomics. J. Econ. Perspect. 32(3), 59–86 (2018)
Nyoni, T.: Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Rev. 5(6), 16–40 (2018)
Nyoni, T.: ARIMA modeling and forecasting of consumer price index (CPI) in Germany (2019)
ONEI. Índice de precios al consumidor base diciembre 2010 (2022)
Qin, X., Sun, M., Dong, X., Zhang, Y.: Forecasting of china consumer price index based on EEMD and SVR method. In: 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), pp. 329–333. IEEE (2018)
Riofrío, J., Chang, O., Revelo-Fuelagán, E.J., Peluffo-Ordóñez, D.H.: Forecasting the consumer price index (CPI) of Ecuador: a comparative study of predictive models. Int. J. Adv. Sci. Eng. Inf. Technol. 10(3), 1078–1084 (2020)
Rosado, R., Abreu, A.J., Arencibia, J.C., Gonzalez, H., Hernandez, Y.: Consumer price index forecasting based on univariate time series and a deep neural network. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2021. LNCS, vol. 13055, pp. 33–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89691-1_4
Sünbül, E.: Linear and nonlinear relationship between real exchange rate, real interest rate and consumer price index: an empirical application for countries with different levels of development. Sci. Ann. Econ. Bus. 70(1), 57–70 (2023)
Torres, J.F., Hadjout, D., Sebaa, A., Martinez-Alvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021)
Triplett, J.: Handbook on Hedonic Indexes and Quality Adjustments in Price Indexes: Special Application to Information Technology Products (2004)
Zahara, S., Ilmiddaviq, M.B., et al.: Consumer price index prediction using long short term memory (LSTM) based cloud computing. J. Phys.: Conf. Ser. 1456, 012022 (2020)
Acknowledgement
This work has been partially funded by FONCI through project: Plataforma para el anélisis de grandes volúmenes de datos y su aplicación a sectores estratégicos.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rosado, R., González Diéz, H., Toledano-López, O.G., Hernández Heredia, Y. (2024). Multivariate Cuban Consumer Price Index Database, Statistic Analysis and Forecast Baseline Based on Vector Autoregressive. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49552-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49551-9
Online ISBN: 978-3-031-49552-6
eBook Packages: Computer ScienceComputer Science (R0)