Abstract
License Plate Recognition (LPR) in videos is a critical task in various domains such as parking management, traffic control, and security. This study focuses on exploring the significance of temporal information in LPR systems to improve their accuracy. Previous research has not fully leveraged temporal information, resulting in multiple prediction results for the same vehicle. Unlike other tasks, LPR generates a sequence of characters per frame, necessitating a distinct approach for combining these outputs. To address this, we conducted a comprehensive investigation of LPR pipelines and different frame combination techniques. Our study introduces a new strategy for character-wise temporal sequence combination, enhancing the accuracy of license plate recognition. The proposed approach was evaluated using a new dataset of Cuban license plates captured in parking lot scenarios showing superior results in most cases. This study can serve as guide for future research and applications in the field of LPR in videos.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alghyaline, S.: Real-time Jordanian license plate recognition using deep learning. J. King Saud Univ. Comput. Inf. Sci. 34(6), 2601–2609 (2022)
Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Psoroulas, I.D., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: a survey. IEEE Trans. Intell. Transp. Syst. 9(3), 377–391 (2008)
Ap, N., Vigneshwaran, T., Arappradhan, M., Madhanraj, R.: Automatic number plate detection in vehicles using faster R-CNN. In: 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1–6 (2020)
Ashrafee, A., Khan, A.M., Irbaz, M.S., Nasim, M.A.A.: Real-time Bangla license plate recognition system for low resource video-based applications. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, pp. 479–488. IEEE (2022)
Becerra-Riera, F., Morales-González, A., Méndez-Vázquez, H., Dugelay, J.: Demographic attribute estimation in face videos combining local information and quality assessment. Mach. Vis. Appl. 33(2), 26 (2022)
Dominguez, D.H.S., Sandoval, S.C.Q., Morocho-Cayamcela, M.E.: End-to-end license plate recognition system for an efficient deployment in surveillance scenarios. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) ICITS 2022. LNNS, vol. 414, pp. 697–704. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_59
Du, Y., et al.: PP-OCR: a practical ultra lightweight OCR system. arXiv preprint arXiv:2009.09941 (2020)
Gonçalves, G.R., Menotti, D., Schwartz, W.R.: License plate recognition based on temporal redundancy. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2577–2582. IEEE Press (2016)
Hashmi, S.N., Kumar, K., Khandelwal, S., Lochan, D., Mittal, S.: Real time license plate recognition from video streams using deep learning. Int. J. Inf. Retrieval Res. 9, 65–87 (2019)
Hegghammer, T.: OCR with tesseract, amazon textract, and google document AI: a benchmarking experiment. J. Comput. Soc. Sci. 5(1), 861–882 (2022)
Laroca, R., Cardoso, E.V., Lucio, D.R., Estevam, V., Menotti, D.: On the cross-dataset generalization in license plate recognition. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 166–178 (2022). arXiv:2201.00267 [cs]
Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector. In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1–10. IEEE (2018)
Lee, D., Yoon, S., Lee, J., Park, D.S.: Real-time license plate detection based on faster R-CNN. KIPS Trans. Softw. Data Eng. 5(11), 511–520 (2016)
Lee, Y., Jun, J., Hong, Y., Jeon, M.: Practical License Plate Recognition in Unconstrained Surveillance Systems with Adversarial Super-Resolution (2019)
Lee, Y., Yun, J., Hong, Y., Lee, J., Jeon, M.: Accurate license plate recognition and super-resolution using a generative adversarial networks on traffic surveillance video. In: 2018 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), JeJu, Korea, South, pp. 1–4. IEEE (2018)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lubna, Mufti, N., Shah, S.A.A.: Automatic number plate recognition: a detailed survey of relevant algorithms. Sensors 21, 3028 (2021)
Nalawati, R.E., Yuntari, A.D.: Ratcliff/obershelp algorithm as an automatic assessment on e-learning. In: 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), pp. 244–248. IEEE (2021)
Oublal, K., Dai, X.: An advanced combination of semi-supervised Normalizing Flow & Yolo (YoloNF) to detect and recognize vehicle license plates (2022). arXiv:2207.10777 [cs]
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, pp. 1–6 (2018)
Seibel, H., Goldenstein, S., Rocha, A.: Eyes on the target: super-resolution and license-plate recognition in low-quality surveillance videos. IEEE Access 5, 20020–20035 (2017)
Subramani, N., Matton, A., Greaves, M., Lam, A.: A survey of deep learning approaches for OCR and document understanding. CoRR abs/2011.13534 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Quiala, C., García-Borroto, M., Sánchez-Rivero, R., Morales-González, A. (2024). Enhancing License Plate Recognition in Videos Through Character-Wise Temporal Combination. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-49552-6_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49551-9
Online ISBN: 978-3-031-49552-6
eBook Packages: Computer ScienceComputer Science (R0)