Skip to main content

Enhancing License Plate Recognition in Videos Through Character-Wise Temporal Combination

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14335))

  • 322 Accesses

Abstract

License Plate Recognition (LPR) in videos is a critical task in various domains such as parking management, traffic control, and security. This study focuses on exploring the significance of temporal information in LPR systems to improve their accuracy. Previous research has not fully leveraged temporal information, resulting in multiple prediction results for the same vehicle. Unlike other tasks, LPR generates a sequence of characters per frame, necessitating a distinct approach for combining these outputs. To address this, we conducted a comprehensive investigation of LPR pipelines and different frame combination techniques. Our study introduces a new strategy for character-wise temporal sequence combination, enhancing the accuracy of license plate recognition. The proposed approach was evaluated using a new dataset of Cuban license plates captured in parking lot scenarios showing superior results in most cases. This study can serve as guide for future research and applications in the field of LPR in videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.openvino.ai/latest/omz_models_model_vehicle_license_plate_detection_barrier_0106.html.

  2. 2.

    https://docs.openvino.ai/latest/omz_models_model_vehicle_detection_0202.html.

References

  1. Alghyaline, S.: Real-time Jordanian license plate recognition using deep learning. J. King Saud Univ. Comput. Inf. Sci. 34(6), 2601–2609 (2022)

    Google Scholar 

  2. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Psoroulas, I.D., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: a survey. IEEE Trans. Intell. Transp. Syst. 9(3), 377–391 (2008)

    Article  Google Scholar 

  3. Ap, N., Vigneshwaran, T., Arappradhan, M., Madhanraj, R.: Automatic number plate detection in vehicles using faster R-CNN. In: 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1–6 (2020)

    Google Scholar 

  4. Ashrafee, A., Khan, A.M., Irbaz, M.S., Nasim, M.A.A.: Real-time Bangla license plate recognition system for low resource video-based applications. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, pp. 479–488. IEEE (2022)

    Google Scholar 

  5. Becerra-Riera, F., Morales-González, A., Méndez-Vázquez, H., Dugelay, J.: Demographic attribute estimation in face videos combining local information and quality assessment. Mach. Vis. Appl. 33(2), 26 (2022)

    Article  Google Scholar 

  6. Dominguez, D.H.S., Sandoval, S.C.Q., Morocho-Cayamcela, M.E.: End-to-end license plate recognition system for an efficient deployment in surveillance scenarios. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) ICITS 2022. LNNS, vol. 414, pp. 697–704. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_59

    Chapter  Google Scholar 

  7. Du, Y., et al.: PP-OCR: a practical ultra lightweight OCR system. arXiv preprint arXiv:2009.09941 (2020)

  8. Gonçalves, G.R., Menotti, D., Schwartz, W.R.: License plate recognition based on temporal redundancy. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2577–2582. IEEE Press (2016)

    Google Scholar 

  9. Hashmi, S.N., Kumar, K., Khandelwal, S., Lochan, D., Mittal, S.: Real time license plate recognition from video streams using deep learning. Int. J. Inf. Retrieval Res. 9, 65–87 (2019)

    Google Scholar 

  10. Hegghammer, T.: OCR with tesseract, amazon textract, and google document AI: a benchmarking experiment. J. Comput. Soc. Sci. 5(1), 861–882 (2022)

    Article  Google Scholar 

  11. Laroca, R., Cardoso, E.V., Lucio, D.R., Estevam, V., Menotti, D.: On the cross-dataset generalization in license plate recognition. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 166–178 (2022). arXiv:2201.00267 [cs]

  12. Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector. In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1–10. IEEE (2018)

    Google Scholar 

  13. Lee, D., Yoon, S., Lee, J., Park, D.S.: Real-time license plate detection based on faster R-CNN. KIPS Trans. Softw. Data Eng. 5(11), 511–520 (2016)

    Article  Google Scholar 

  14. Lee, Y., Jun, J., Hong, Y., Jeon, M.: Practical License Plate Recognition in Unconstrained Surveillance Systems with Adversarial Super-Resolution (2019)

    Google Scholar 

  15. Lee, Y., Yun, J., Hong, Y., Lee, J., Jeon, M.: Accurate license plate recognition and super-resolution using a generative adversarial networks on traffic surveillance video. In: 2018 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), JeJu, Korea, South, pp. 1–4. IEEE (2018)

    Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Lubna, Mufti, N., Shah, S.A.A.: Automatic number plate recognition: a detailed survey of relevant algorithms. Sensors 21, 3028 (2021)

    Google Scholar 

  18. Nalawati, R.E., Yuntari, A.D.: Ratcliff/obershelp algorithm as an automatic assessment on e-learning. In: 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), pp. 244–248. IEEE (2021)

    Google Scholar 

  19. Oublal, K., Dai, X.: An advanced combination of semi-supervised Normalizing Flow & Yolo (YoloNF) to detect and recognize vehicle license plates (2022). arXiv:2207.10777 [cs]

  20. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, pp. 1–6 (2018)

    Google Scholar 

  21. Seibel, H., Goldenstein, S., Rocha, A.: Eyes on the target: super-resolution and license-plate recognition in low-quality surveillance videos. IEEE Access 5, 20020–20035 (2017)

    Article  Google Scholar 

  22. Subramani, N., Matton, A., Greaves, M., Lam, A.: A survey of deep learning approaches for OCR and document understanding. CoRR abs/2011.13534 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton García-Borroto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quiala, C., García-Borroto, M., Sánchez-Rivero, R., Morales-González, A. (2024). Enhancing License Plate Recognition in Videos Through Character-Wise Temporal Combination. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics