Skip to main content

Offline Writer Identification and Verification Evaluation Protocols for Spanish Database

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Abstract

Writer identification based on text images is a well studied topic in Biometrics. Several methods have been proposed for this task. Despite the results achieved, current methods are limited in their ability to handle diverse languages, writing styles, and document types. In this work, we proposed relevant verification and open/closed-set evaluation protocols to assess the performance of writer identification methods on CENATAV-HTR dataset, containing Spanish handwritten documents. Under these evaluation protocols, we evaluate and analyze the effectiveness of a state-of-the-art Recurrent Neural Network originally proposed for English writer identification. The obtained results demonstrated that the models trained on English are not suitable to recognize writers in Spanish and thus they need to be adjusted or finetuned for this particular language. All text images and evaluation protocols are made available for future research in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ecarballea/CENATAV-HTR.

References

  1. Adak, C., Chaudhuri, B.B., Blumenstein, M.: Impact of struck-out text on writer identification. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1465–1471. IEEE (2017)

    Google Scholar 

  2. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)

    Article  Google Scholar 

  3. Carballea, E., Becerra-Riera, F., Martinez-Diaz, Y., Mendez-vazquez, H.: Reconocimiento automatico de textos manuscritos en idioma español basado en aprendizaje profundo. In: Conferencia Internacional en Ciencias Computacionales e Informaticas (CICCI’2022), pp. 1–9. InformaticaHabana (2022)

    Google Scholar 

  4. Christlein, V., Bernecker, D., Hönig, F., Maier, A., Angelopoulou, E.: Writer identification using GMM supervectors and exemplar-SVMs. Pattern Recogn. 63, 258–267 (2017)

    Article  Google Scholar 

  5. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., di Freca, A.S.: What is the minimum training data size to reliably identify writers in medieval manuscripts? Pattern Recogn. Lett. 129, 198–204 (2020)

    Article  Google Scholar 

  6. De Stefano, C., Maniaci, M., Fontanella, F., di Freca, A.S.: Layout measures for writer identification in mediaeval documents. Measurement 127, 443–452 (2018)

    Article  Google Scholar 

  7. Dhieb, T., Njah, S., Boubaker, H., Ouarda, W., Ayed, M.B., Alimi, A.M.: Towards a novel biometric system for forensic document examination. Comput. Secur. 97, 101973 (2020)

    Article  Google Scholar 

  8. Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_3

    Chapter  Google Scholar 

  9. He, S., Schomaker, L.: GR-RNN: global-context residual recurrent neural networks for writer identification. Pattern Recogn. 117, 107975 (2021)

    Article  Google Scholar 

  10. He, S., Wiering, M., Schomaker, L.: Junction detection in handwritten documents and its application to writer identification. Pattern Recogn. 48(12), 4036–4048 (2015)

    Article  Google Scholar 

  11. Kleber, F., Fiel, S., Diem, M., Sablatnig, R.: CVL-DataBase: an off-line database for writer retrieval, writer identification and word spotting. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 560–564. IEEE (2013)

    Google Scholar 

  12. Lai, S., Zhu, Y., Jin, L.: Encoding pathlet and SIFT features with bagged VLAD for historical writer identification. IEEE Trans. Inf. Forensics Secur. 15, 3553–3566 (2020)

    Article  Google Scholar 

  13. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002). https://doi.org/10.1007/s100320200071

    Article  Google Scholar 

  14. Pervouchine, V., Leedham, G.: Extraction and analysis of forensic document examiner features used for writer identification. Pattern Recogn. 40(3), 1004–1013 (2007)

    Article  Google Scholar 

  15. Purohit, N., Panwar, S.: State-of-the-art: offline writer identification methodologies. In: 2021 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–8. IEEE (2021)

    Google Scholar 

  16. Rehman, A., Naz, S., Razzak, M.I.: Writer identification using machine learning approaches: a comprehensive review. Multimed. Tools Appl. 78, 10889–10931 (2019). https://doi.org/10.1007/s11042-018-6577-1

    Article  Google Scholar 

  17. Rehman, A., Naz, S., Razzak, M.I., Hameed, I.A.: Automatic visual features for writer identification: a deep learning approach. IEEE Access 7, 17149–17157 (2019)

    Article  Google Scholar 

  18. Schomaker, L., Vuurpijl, L., Schomaker, L.: Forensic writer identification: a benchmark data set and a comparison of two systems (2000)

    Google Scholar 

  19. Shivram, A., Ramaiah, C., Porwal, U., Govindaraju, V.: Modeling writing styles for online writer identification: a hierarchical Bayesian approach. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 387–392. IEEE (2012)

    Google Scholar 

  20. Trinh, T., Dai, A., Luong, T., Le, Q.: Learning longer-term dependencies in RNNs with auxiliary losses. In: International Conference on Machine Learning, pp. 4965–4974. PMLR (2018)

    Google Scholar 

  21. Wang, Z.R., Du, J.: Fast writer adaptation with style extractor network for handwritten text recognition. Neural Netw. 147, 42–52 (2022)

    Article  Google Scholar 

  22. Zhang, X.Y., Xie, G.S., Liu, C.L., Bengio, Y.: End-to-end online writer identification with recurrent neural network. IEEE Trans. Hum.-Mach. Syst. 47(2), 285–292 (2016)

    Article  Google Scholar 

  23. Zhang, X.Y., Yin, F., Zhang, Y.M., Liu, C.L., Bengio, Y.: Drawing and recognizing Chinese characters with recurrent neural network. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 849–862 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heydi Méndez-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carballea Alonso, E., Martínez-Díaz, Y., Méndez-Vázquez, H. (2024). Offline Writer Identification and Verification Evaluation Protocols for Spanish Database. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics