Abstract
This paper studies the effectiveness of Blind Face Restoration methods to boost the performance of face recognition systems on low-resolution images. We investigate the use of three blind face restoration techniques, which have demonstrated impressive results in generating realistic high-resolution face images. Three state-of-the-art face recognition methods were selected to assess the impact of using the generated high-resolution images on their performance. Our analysis includes both, synthesized and native low-resolution images. The conducted experimental evaluation show that this is still an open research problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)
Chen, C., Li, X., Yang, L., Lin, X., Zhang, L., Wong, K.Y.K.: Progressive semantic-aware style transformation for blind face restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11896–11905 (2021)
Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46
Cheng, Z., Zhu, X., Gong, S.: Low-resolution face recognition. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 605–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_38
Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)
Chrysos, G.G., Zafeiriou, S.: Deep face deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 69–78 (2017)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690–4699 (2019)
Grgic, M., Delac, K., Grgic, S.: SCface-surveillance cameras face database. Multimed. Tools Appl. 51(3), 863–879 (2011)
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Huang, G.B., Ramesh, M., Berg, T., Learned-miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2007)
Jiang, J., Wang, C., Liu, X., Ma, J.: Deep learning-based face super-resolution: a survey. ACM Comput. Surv. (CSUR) 55(1), 1–36 (2021)
Jung, S.H., Lee, T.B., Heo, Y.S.: Deep feature prior guided face deblurring. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3531–3540 (2022)
Li, P., Prieto, L., Mery, D., Flynn, P.: Face recognition in low quality images: a survey. arXiv preprint arXiv:1805.11519 (2018)
Li, X., Chen, C., Zhou, S., Lin, X., Zuo, W., Zhang, L.: Blind face restoration via deep multi-scale component dictionaries. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 399–415. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_23
Liu, J., Liu, D., Yang, W., Xia, S., Zhang, X., Dai, Y.: A comprehensive benchmark for single image compression artifact reduction. IEEE Trans. Image Process. 29, 7845–7860 (2020)
Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)
Makwana, P., Kumar Singh, S., Ram Dubey, S.: Resolution invariant face recognition. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds.) Computer Vision and Machine Intelligence. LNNS, vol. 586, pp. 733–745. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-7867-8_58
Martinez-Diaz, Y., Luevano, L.S., Mendez-Vazquez, H., Nicolas-Diaz, M., Chang, L., Gonzalez-Mendoza, M.: ShuffleFaceNet: a lightweight face architecture for efficient and highly-accurate face recognition. In: IEEE International Conference on Computer Vision Workshops (2019)
Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., Tong, X.: Face video deblurring using 3D facial priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9388–9397 (2019)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Shahbakhsh, M.B., Hassanpour, H.: Empowering face recognition methods using a GAN-based single image super-resolution network. Int. J. Eng. 35(10), 1858–1866 (2022)
Singh, N., Rathore, S.S., Kumar, S.: Towards a super-resolution based approach for improved face recognition in low resolution environment. Multimed. Tools Appl. 81(27), 38887–38919 (2022)
Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021)
Wang, T., et al.: A survey of deep face restoration: denoise, super-resolution, deblur, artifact removal. arXiv preprint arXiv:2211.02831 (2022)
Wang, X., Li, Y., Zhang, H., Shan, Y.: Towards real-world blind face restoration with generative facial prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9168–9178 (2021)
Yang, T., Ren, P., Xie, X., Zhang, L.: GAN prior embedded network for blind face restoration in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 672–681 (2021)
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21(12), 3106–3121 (2019)
Yasarla, R., Perazzi, F., Patel, V.M.: Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE Trans. Image Process. 29, 6251–6263 (2020)
Yue, Z., Yong, H., Zhao, Q., Meng, D., Zhang, L.: Variational denoising network: toward blind noise modeling and removal. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Zeng, D., Chen, H., Zhao, Q.: Towards resolution invariant face recognition in uncontrolled scenarios. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)
Zhang, P., Zhang, K., Luo, W., Li, C., Wang, G.: Blind face restoration: benchmark datasets and a baseline model. arXiv preprint arXiv:2206.03697 (2022)
Zhou, S., Chan, K., Li, C., Loy, C.C.: Towards robust blind face restoration with codebook lookup transformer. In: Advances in Neural Information Processing Systems, vol. 35, pp. 30599–30611 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez-Díaz, Y., Luévano, L.S., Méndez-Vázquez, H. (2024). Effectiveness of Blind Face Restoration to Boost Face Recognition Performance at Low-Resolution Images. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-49552-6_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49551-9
Online ISBN: 978-3-031-49552-6
eBook Packages: Computer ScienceComputer Science (R0)