Skip to main content

Effectiveness of Blind Face Restoration to Boost Face Recognition Performance at Low-Resolution Images

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Abstract

This paper studies the effectiveness of Blind Face Restoration methods to boost the performance of face recognition systems on low-resolution images. We investigate the use of three blind face restoration techniques, which have demonstrated impressive results in generating realistic high-resolution face images. Three state-of-the-art face recognition methods were selected to assess the impact of using the generated high-resolution images on their performance. Our analysis includes both, synthesized and native low-resolution images. The conducted experimental evaluation show that this is still an open research problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/yangxy/GPEN.

  2. 2.

    https://github.com/TencentARC/GFPGAN/.

  3. 3.

    https://shangchenzhou.com/projects/CodeFormer/.

References

  1. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  2. Chen, C., Li, X., Yang, L., Lin, X., Zhang, L., Wong, K.Y.K.: Progressive semantic-aware style transformation for blind face restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11896–11905 (2021)

    Google Scholar 

  3. Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46

    Chapter  Google Scholar 

  4. Cheng, Z., Zhu, X., Gong, S.: Low-resolution face recognition. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 605–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_38

    Chapter  Google Scholar 

  5. Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)

  6. Chrysos, G.G., Zafeiriou, S.: Deep face deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 69–78 (2017)

    Google Scholar 

  7. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690–4699 (2019)

    Google Scholar 

  8. Grgic, M., Delac, K., Grgic, S.: SCface-surveillance cameras face database. Multimed. Tools Appl. 51(3), 863–879 (2011)

    Article  Google Scholar 

  9. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  11. Huang, G.B., Ramesh, M., Berg, T., Learned-miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2007)

    Google Scholar 

  12. Jiang, J., Wang, C., Liu, X., Ma, J.: Deep learning-based face super-resolution: a survey. ACM Comput. Surv. (CSUR) 55(1), 1–36 (2021)

    Article  Google Scholar 

  13. Jung, S.H., Lee, T.B., Heo, Y.S.: Deep feature prior guided face deblurring. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3531–3540 (2022)

    Google Scholar 

  14. Li, P., Prieto, L., Mery, D., Flynn, P.: Face recognition in low quality images: a survey. arXiv preprint arXiv:1805.11519 (2018)

  15. Li, X., Chen, C., Zhou, S., Lin, X., Zuo, W., Zhang, L.: Blind face restoration via deep multi-scale component dictionaries. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 399–415. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_23

    Chapter  Google Scholar 

  16. Liu, J., Liu, D., Yang, W., Xia, S., Zhang, X., Dai, Y.: A comprehensive benchmark for single image compression artifact reduction. IEEE Trans. Image Process. 29, 7845–7860 (2020)

    Article  Google Scholar 

  17. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  18. Makwana, P., Kumar Singh, S., Ram Dubey, S.: Resolution invariant face recognition. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds.) Computer Vision and Machine Intelligence. LNNS, vol. 586, pp. 733–745. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-7867-8_58

    Chapter  Google Scholar 

  19. Martinez-Diaz, Y., Luevano, L.S., Mendez-Vazquez, H., Nicolas-Diaz, M., Chang, L., Gonzalez-Mendoza, M.: ShuffleFaceNet: a lightweight face architecture for efficient and highly-accurate face recognition. In: IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  20. Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., Tong, X.: Face video deblurring using 3D facial priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9388–9397 (2019)

    Google Scholar 

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  22. Shahbakhsh, M.B., Hassanpour, H.: Empowering face recognition methods using a GAN-based single image super-resolution network. Int. J. Eng. 35(10), 1858–1866 (2022)

    Article  Google Scholar 

  23. Singh, N., Rathore, S.S., Kumar, S.: Towards a super-resolution based approach for improved face recognition in low resolution environment. Multimed. Tools Appl. 81(27), 38887–38919 (2022)

    Article  Google Scholar 

  24. Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021)

    Article  Google Scholar 

  25. Wang, T., et al.: A survey of deep face restoration: denoise, super-resolution, deblur, artifact removal. arXiv preprint arXiv:2211.02831 (2022)

  26. Wang, X., Li, Y., Zhang, H., Shan, Y.: Towards real-world blind face restoration with generative facial prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9168–9178 (2021)

    Google Scholar 

  27. Yang, T., Ren, P., Xie, X., Zhang, L.: GAN prior embedded network for blind face restoration in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 672–681 (2021)

    Google Scholar 

  28. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21(12), 3106–3121 (2019)

    Article  Google Scholar 

  29. Yasarla, R., Perazzi, F., Patel, V.M.: Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE Trans. Image Process. 29, 6251–6263 (2020)

    Article  Google Scholar 

  30. Yue, Z., Yong, H., Zhao, Q., Meng, D., Zhang, L.: Variational denoising network: toward blind noise modeling and removal. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  31. Zeng, D., Chen, H., Zhao, Q.: Towards resolution invariant face recognition in uncontrolled scenarios. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)

    Google Scholar 

  32. Zhang, P., Zhang, K., Luo, W., Li, C., Wang, G.: Blind face restoration: benchmark datasets and a baseline model. arXiv preprint arXiv:2206.03697 (2022)

  33. Zhou, S., Chan, K., Li, C., Loy, C.C.: Towards robust blind face restoration with codebook lookup transformer. In: Advances in Neural Information Processing Systems, vol. 35, pp. 30599–30611 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heydi Méndez-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez-Díaz, Y., Luévano, L.S., Méndez-Vázquez, H. (2024). Effectiveness of Blind Face Restoration to Boost Face Recognition Performance at Low-Resolution Images. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics