Abstract
We describe a control method for multi-agent vehicles, to make them adopt a formation around a non-pre-specified point on the plane, and with common but non-pre-imposed orientation. The problem may be considered as part of a more complex maneuver in which the robots are summoned to a rendezvous to advance in formation. The novelty and most appealing feature of our control method is that it is physics-based; it relies on the design of distributed dynamic controllers that may be assimilated to second-order mechanical systems. The consensus task is achieved by making the controllers, not the vehicles themselves directly, achieve consensus. Then, the vehicles are steered into a formation by virtue of fictitious mechanical couplings with their respective controllers. We cover different settings of increasing technical difficulty, from consensus formation control of second-order integrators to second-order nonholonomic vehicles and in scenarii including both state- and output-feedback control. In addition, we address the realistic case in which the vehicles communicate over a common WiFi network that introduces time-varying delays. Remarkably, the same physics-based method applies to all the scenarii.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdessameud, A., Polushin, I.G., Tayebi, A.: Synchronization of Lagrangian systems with irregular communication delays. IEEE Trans. Autom. Control 59(1), 187–193 (2014)
Abdessameud, A., Tayebi, A.: On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst. Control Lett. 59(12), 812–821 (2010)
Abdessameud, A., Tayebi, A., Polushin, I.G.: Leader-follower synchronization of Euler–Lagrange systems with time-varying leader trajectory and constrained discrete-time communication. IEEE Trans. Autom. Control 62(5), 2539–2545 (May2017)
Barbashin, E.A., Krasovskiĭ, N.N.: Об устоЙчивости движеняи в целом. Dokl. Akad. Nauk. USSR 86(3), 453–456 (1952). Commonly (and wrongly) cited in English under: “On the stability of motion in the large”; Correct translation: “On the stability of motion in the whole”
Bautista-Castillo, A., Lopez-Franco, C., Nuño, E.: Consensus-based formation control for multiple nonholonomic robots. In: 2016 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC). IEEE (2016)
Brockett, R.W.: Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 27(1), 181–191 (1983)
Burkov, I.V., Zaremba, A.T.: Dynamics of elastic manipulators with electric drives. Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 22(1), 57–64 (1987). Engl. transl. in Mechanics of Solids, Allerton Press
Cao, Y., Ren, W.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer (2011)
Cheng, Y., Jia, R., Du, H., Wen, G., Zhu, W.: Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. Int. J. Robust Nonlinear Control 28(6), 2082–2096 (2018)
Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: On a class of hierarchical formations of unicycles and their internal dynamics. IEEE Trans. Autom. Control 57(4), 845–859 (2012)
Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)
Dixon, W.E., Dawson, D.M., Zhang, F., Zergeroglu, E.: Global exponential tracking control of a mobile robot system via a PE condition. IEEE Trans. Syst. Man. Cybernet. B 30(1), 129–142 (2000)
Do, K.D., Jiang, Z.-P., Pan, J.: A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots. IEEE Trans. Robot. Autom. 20(3), 589–594 (2004)
Dong, W.: Distributed observer-based cooperative control of multiple nonholonomic mobile agents. Int. J. Syst. Sc. 43(5), 797–808 (2012)
El-Hawwary, M.I., Maggiore, M.: Distributed circular formation stabilization for dynamic unicycles. IEEE Trans. Autom. Control 58(1), 149–162 (2013)
Génération Robots. Pioneer P3-DX mobile robot. Accessed May 06, 2021. [Online]. https://www.generationrobots.com/en/402395-robot-mobile-pioneer-3-dx.html
González, A., Aragüés, R., López-Nicolás, G., Sagüés, C.: Stability analysis of nonholonomic multiagent coordinate-free formation control subject to communication delays. Int. J. Robust Nonlinear Control 28(14), 4121–4138 (2018)
Hernández, A.T., Loría, A., Nuño, E., Panteley, E.: Consensus-formation control of nonholonomic robots without velocity measurements. In: Proceedings of European Control Conference, pp. 674–679, St. Petersburg, Russia (2020)
Huang, J., Wen, C., Wang, W., Jiang, Z.-P.: Adaptive output feedback tracking control of a nonholonomic mobile robot. Automatica 50, 821–831 (2014)
Hui, Q.: Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Trans. Autom. Control 56(1), 207–211 (2011)
Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)
Jin, J., Gans, N.: Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem. Robot. Auton. Syst. 95(9), 25–36 (2017)
Khalil, H.: Nonlinear Systems. Macmillan Publishing Co., 2nd ed., New York (1996)
Lee, D.: Passive decomposition and control of nonholonomic mechanical systems. IEEE Trans. Robot. 26(6), 978–992 (2010)
Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)
Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786–1791 (2013)
Liang, X., Wang, H., Liu, Y., Chen, W., Liu, T.: Formation control of nonholonomic mobile robots without position and velocity measurements. IEEE Trans. Robot. 34(2), 434–446 (2018)
Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)
Lizárraga, D.A.: Obstructions to the existence of universal stabilizers for smooth control systems. Math. Control, Sign. Syst. 16, 255–277 (2004)
Loría, A.: From feedback to cascade-interconnected systems: breaking the loop. In: Proceedings of 47th IEEE Conference Decision Control, pp. 4109–4114, Cancun, Mex (2008)
Loría, A., Panteley, E., Teel, A.: A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems. In: Proceedings of 5th European Control Conference, pp. 1363–1368, Karlsrühe, Germany (1999)
Maghenem, M.: Stability and stabilization of networked time-varying systems. Ph.D. thesis, Univ Paris Saclay, Gif sur Yvette (2017). https://tel.archives-ouvertes.fr/tel-01596158
Maghenem, M., Loría, A., Nuño, E., Panteley, E.: Distributed full-consensus control of nonholonomic vehicles under non-differentiable measurement delays. IEEE Control Syst. Lett. 5(1), 97–102 (2021)
Mao, W., Wang, C., Chen, W., Li, X.: Observer-based consensus design for multi-agent systems with unavailable velocities of leader and followers. In: Proceedings of 32nd Chinese Control Conference, pp. 7030–7033 (2013)
Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control 49(11), 1963–1974 (2004)
Montijano, E., Thunberg, J., Hu, X., Sagüés, C.: Epipolar visual servoing for multirobot distributed consensus. IEEE Trans. Robot. 29(5), 1212–1225 (2013)
Moshtagh, N., Jadbabaie, A.: Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)
Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Prentice-Hall Inc, New Jersey (1989)
Neimark, J.I., Fufaev, F.A.: Dynamics of Nonholonomic Systems, vol. 33. A.M.S. Translations of Mathematical Monographs, Providence, RI (1972)
Ning, B., Han, Q.: Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans. Autom. Control 64(4), 1686–1693 (2019)
Nuño, E.: Consensus of Euler–Lagrange systems using only position measurements. IEEE Trans. Control Netw. Syst. 5(1), 489–498 (2018)
Nuño, E., Ortega, R.: Achieving consensus of Euler–Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control. IEEE Trans. Control Syst. Technol. 26(1), 222–232 (2018)
Nuño, E., Loría, A., Hernández, A.T., Maghenem, M., Panteley, E.: Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays. Automatica 120, 109114 (2020)
Nuño, E., Loría, A., Panteley, E.: Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements. IEEE Control Syst. Lett. 6, 902–907 (2022)
Nuño, E., Loría, A., Panteley, E., Restrepo-Ochoa, E.: Rendezvous of nonholonomic robots via output-feedback control under time-varying delays. IEEE Trans. Control Syst. Technol. 30(6), 2707–2716 (2022)
Nuño, E., Sarras, I., Loría, A., Maghenem, M., Cruz-Zavala, E., Panteley, E.: Strict Lyapunov-Krasovskii functionals for undirected networks of Euler–Lagrange systems with time-varying delays. Syst. Contr. Lett. 135, 104579 (2020)
Panteley, E., Lefeber, E., Loría, A., Nijmeijer, H.: Exponential tracking of a mobile car using a cascaded approach. In: IFAC Workshop on Motion Control, pp. 221–226, Grenoble, France (1998)
Panteley, E., Loría, A.: Synchronization and dynamic consensus of heterogeneous networked systems. IEEE Trans. Autom. Control 62(8), 3758–3773 (2017)
Panteley, H., Loría, A., Sukumar, S.: Strict lyapunov functions for consensus under directed connected graphs. In: Proceedings of European Control Conference (ECC), pp. 935–940, St. Petersburg, Russia (2020)
Poonawala, H.A., Satici, A.C., Spong, M.W.: Leader-follower formation control of nonholonomic wheeled mobile robots using only position measurements. In: Proceedings of 9th Asian Control Conference, pp. 1–6 (2013)
Poonawala, H.A., Spong, M.W.: Preserving strong connectivity in directed proximity graphs. IEEE Trans. Autom. Control 62(9), 4392–4404 (2017)
Ren, W., Beard, R.W.: Distributed Consensus in Multivehicle Cooperative Control. Springer (2005)
Restrepo, E., Loría, A., Sarras, I., Marzat, J.: Stability and robustness of edge-agreement-based consensus protocols for undirected proximity graphs. Int. J. Control (2020)
Restrepo-Ochoa, E., Loría, A., Sarras, I., Marzat, J.: Robust consensus of high-order systems under output constraints: application to rendezvous of underactuated UAVs. IEEE Trans. Autom. Control 68(1), 329–342 (2023)
Roza, A., Maggiore, M., Scardovi, L.: A Smooth Distributed Feedback for Global Rendezvous of Unicycles. IEEE Trans. Control Netw. Syst.5(1), 640–652 (2018)
Samson, C.: Time-varying stabilization of a car-like mobile robot. Technical report, INRIA Sophia-Antipolis, 1990. In: Proceedings in Advanced Robot Control, vol. 162. Springer, Berlin (1991)
Samson, C.: Control of chained system: application to path following and time-varying point stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)
Spong, M.: Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Contr. 109, 310–319 (1987)
Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier Inc, First ed. (2013)
Wang, P., Ding, B.: Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems. IEEE Trans. Autom. Control 59(6), 1439–1453 (2014)
Wang, X., Hong, Y.: Distributed observers for tracking a moving target by cooperative multiple agents with time delays. In: 2009 ICCAS-SICE, pp. 982–987 (2009)
Yang, C., Xie, W., Lei, C., Ma, B.: Smooth time-varying formation control of multiple nonholonomic agents. In: Proceedings of Chinese Intelligent of System Conference, pp. 283–291. Springer (2016)
Zhao, S.: Affine formation maneuver control of multiagent systems. IEEE Trans. Autom. Control 63(12), 4140–4155 (2018)
Zhao, X., Zheng, X., Ma, C., Li, R.: Distributed consensus of multiple Euler–Lagrange systems networked by sampled-data information with transmission delays and data packet dropouts. IEEE Trans. Autom. Sci. Eng. 14(3), 1440–1450 (2017)
Acknowledgements
This work was supported in part by the “Agence Nationale de la Recherche” (ANR) under Grant HANDY ANR-18-CE40-0010.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Loría, A., Nuño, E., Panteley, E., Restrepo, E. (2024). Physics-Based Output-Feedback Consensus-Formation Control of Networked Autonomous Vehicles. In: Postoyan, R., Frasca, P., Panteley, E., Zaccarian, L. (eds) Hybrid and Networked Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-49555-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49555-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49554-0
Online ISBN: 978-3-031-49555-7
eBook Packages: EngineeringEngineering (R0)