Skip to main content

Improved Synthesis of Saturating Sampled-Data Control Laws for Linear Plants

  • Chapter
  • First Online:
Hybrid and Networked Dynamical Systems

Abstract

The focus of this chapter is the stabilization of linear systems under saturating aperiodic sampled-data control. By employing a hybrid system representation, we establish conditions for the local and global stability of the origin of the closed-loop system using a specific class of quadratic timer (clock) dependent Lyapunov functions. These conditions are formulated as Sum-of-Squares constraints within optimization problems, enabling the design of stabilizing control laws that aim to maximize an estimate of the Region of Attraction to the Origin (RAO) or to maximize the admissible interval between two sampling instants in order to ensure that a certain given set of initial conditions is included in the RAO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The level set \(\mathcal{E}_{P}^{x_p}\) corresponds to (9.9) in the case where \(V(\eta )=x'P(\tau )x\) and, since P can be normalized, \(\mu \) can be considered as 1 without loss of generality in this case.

References

  1. Antsaklis, P., & Baillieul, J. (2007). A special issue on technology of networked control systems. Proc. IEEE, 95(1), 5–8.

    Article  Google Scholar 

  2. Åström, K. J., & Wittenmark, B. (1984). Computer Controlled Systems: Theory and Design. Information and System Sciences SeriesUpper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  3. Bamieh, B., Pearson, J. B., Francis, B. A., & Tannenbaum, A. (1991). A lifting technique for linear periodic systems with applications to sampled-data control. Syst. Control Lett., 17(2), 79–88.

    Article  MathSciNet  Google Scholar 

  4. Briat, C. (2013). Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints. Automatica, 49(11), 3449–3457.

    Article  MathSciNet  Google Scholar 

  5. Cloosterman, M. B. G., Hetel, L., van de Wouw, N., Heemels, W. P. M. H., Daafouz, J., & Nijmeijer, H. (2010). Controller synthesis for networked control systems. Automatica, 46, 1584–1594.

    Article  MathSciNet  Google Scholar 

  6. Fagundes, A.S., Gomes da Silva Jr., J.M.: Design of saturating aperiodic sampled-data control laws for linear plants: a hybrid system approach. In: 20th European Control Conference (ECC). London, UK, European Control Association (EUCA) (2022)

    Google Scholar 

  7. Fagundes, A.S., Gomes da Silva Jr., J.M., Jungers, M.: Stability analysis of sampled-data control systems with input saturation: a hybrid system approach. Eur. J. Control (2023)

    Google Scholar 

  8. Fiacchini, M., Gomes da Silva Jr., J.M.: Stability of sampled-data control systems under aperiodic sampling and input saturation. In: 57th IEEE Conference on Decision and Control, pp. 1286–1293. Miami Beach (2018)

    Google Scholar 

  9. Finsler, P.: Über das vorkommen definiter und semidefiniter formen in scharen quadratischer formen. Commentarii Mathematici Helvetici 9, 188–192 (1937)

    Google Scholar 

  10. Fridman, E. (2010). A refined input delay approach to sampled-data control. Automatica, 46(2), 421–427.

    Article  MathSciNet  Google Scholar 

  11. Fridman, E., Seuret, A., & Richard, J.-P. (2004). Robust sampled-data stabilization of linear systems—an input delay approach introduction. Automatica, 40, 1441–1446.

    Article  MathSciNet  Google Scholar 

  12. Goebel, R., Sanfelice, R. G., & Teel, A. R. (2009). Hybrid dynamical systems. IEEE Control Syst. Mag., 29(2), 28–93.

    Article  MathSciNet  Google Scholar 

  13. Goebel, R., Sanfelice, R. G., & Teel, A. R. (2012). Hybrid Dynamical Systems: Modeling, Stability and Robustness. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  14. Gomes da Silva Jr., J.M., Tarbouriech, S.: Antiwindup design with guaranteed regions of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1) (2005)

    Google Scholar 

  15. Hetel, L., Fiter, C., Omran, H., Seuret, A., Fridman, E., Richard, J.-P., & Niculescu, S. I. (2016). Recent developments on the stability of systems with aperiodic sampling: an overview. Automatica, 76, 309–335.

    Article  MathSciNet  Google Scholar 

  16. Hu, T., & Lin, Z. (2001). Control Systems with Actuator Saturation: Analysis and Design. Boston, MA: Birkhauser.

    Book  Google Scholar 

  17. Huff, D.D., Fiacchini, M., Gomes da Silva Jr., J.M.: Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach. IEEE Trans. Autom. Control 67(3), 1423–1429 (2022)

    Google Scholar 

  18. Liu, W., Chitour, Y., & Sontag, E. D. (1996). On finite-gain stability of linear systems subject to input saturation. SIAM J. Control Optim., 34(4), 1190–1219.

    Article  MathSciNet  Google Scholar 

  19. Palmeira, A.H.K., Gomes da Silva Jr., J.M., Tarbouriech, S., Ghiggi, I.M.F.: Sampled-data control under magnitude and rate saturating actuators. Int. J. Robust Nonlinear Control 26(15), 3232–3252 (2016)

    Google Scholar 

  20. Prajna, S., Papachristodoulou, A., Valmorbida, G., Anderson, J., Seiler, P., Parrilo, P.: SOSTOOLS: sum of squares optimization toolbox for MATLAB. GNU General Public License (2004)

    Google Scholar 

  21. Seuret, A. (2012). A novel stability analysis of linear systems under asynchrounous samplings. Automatica, 48(1), 177–182.

    Article  MathSciNet  Google Scholar 

  22. Seuret, A., Gomes da Silva Jr., J.M.: Taking into account period variations and actuator saturation in sampled-data systems. Syst. Control Lett. 61, 1286–1293 (2012)

    Google Scholar 

  23. Sussmann, H. J., Sontag, E. D., & Yang, Y. (1994). A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Autom. Control, 39(12), 2411–2425.

    Article  MathSciNet  Google Scholar 

  24. Tarbouriech, S., Garcia, G., Gomes da Silva Jr., J.M., Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer, Berlin (2011)

    Google Scholar 

  25. Zhang, W., Branicky, M. S., & Phillips, S. M. (2001). Stability of networked control systems. IEEE Control Syst. Mag., 21, 84–99.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the “Agence Nationale de la Recherche” (ANR, France) under Grant HANDY ANR-18-CE40-0010, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)-Finance Code 001, and by the Conselho Nacional de Desenvolvimento Cientfico e Tecnológico (CNPq, Brazil) - under Grant PQ-307449/2019-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manoel Gomes da Silva Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagundes, A.S., Gomes da Silva Jr., J.M., Jungers, M. (2024). Improved Synthesis of Saturating Sampled-Data Control Laws for Linear Plants. In: Postoyan, R., Frasca, P., Panteley, E., Zaccarian, L. (eds) Hybrid and Networked Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-49555-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49555-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49554-0

  • Online ISBN: 978-3-031-49555-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics