Abstract
Tuberculosis (TB) is a chronic respiratory disease caused by a bacterial infection and has one of the highest mortality worldwide. Timely and precise TB detection is crucial as it can be dangerous if left untreated. To achieve accurate results, it is essential to have a high-resolution input. This paper introduces a Low and high level feature steering (LHFS) module, which reconstructs high-resolution images by a reference image that contains same information to the low-resolution input. Additionally, the Selective feature integration (SFI) module seamlessly integrates Ref image features into extracted features of LR image. The proposed model for factors 2, 4, and 6, attains super resolution metrics such as PSNR values of 30.225, 31.176, 33.836, and SSIM values of 0.8642, 0.8801, 0.9052 with classification metric accuracy values of 99.66, 98.96 and 98.32 respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Chen, H., Gu, J., Zhang, Z.: Attention in attention network for image super-resolution. arXiv preprint arXiv:2104.09497
Hu, Y., Li, J., Huang, Y., Gao, X.: Channel-wise and spatial feature modulation network for single image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3911–3927 (2019)
Dai, T., Zha, H., Jiang, Y., Xia, S.-T.: Image super-resolution via residual block attention networks, pp. 3879–3886 (2019). https://doi.org/10.1109/ICCVW.2019.00481
Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: CrossNet: an end-to-end reference-based super resolution network using cross-scale warping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 87–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_6
Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7982–7991 (2019)
Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: MASA-SR: matching acceleration and spatial adaptation for reference-based image super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6368–6377 (2021)
Yeswanth, P.V., Deivalakshmi, S., George, S., Ko, S.-B.: Residual skip network-based super-resolution for leaf disease detection of grape plant. Circ. Syst. Signal Process. 42(11), 6871–6899 (2023). https://doi.org/10.1007/s00034-023-02430-2
Yeswanth, P.V., Khandelwal, R., Deivalakshmi, S.: Super resolution-based leaf disease detection in potato plant using broad deep residual network (BDRN). SN Comput. Sci. 4(2), 112 (2022)
Yeswanth, P.V., Deivalakshmi, S.: Extended wavelet sparse convolutional neural network (EWSCNN) for super resolution. Sādhanā 48(2), 52 (2023)
Chauhan, A., Chauhan, D., Rout, C.: Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS ONE 9, e112980 (2014). https://doi.org/10.1371/journal.pone.0112980
Liu, C., et al.: TX-CNN: detecting tuberculosis in chest X-ray images using convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, pp. 2314–2318 (2017). https://doi.org/10.1109/ICIP.2017.8296695
Yeswanth, P.V., Raviteja, R., Deivalakshmi, S.: Sovereign Critique Network (SCN) Based Super-Resolution for chest X-rays images. In: 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, pp. 1–5 (2023). https://doi.org/10.1109/IConSCEPT57958.2023.10170157
Norval, M., Wang, Z., Sun, Y.: Pulmonary Tuberculosis Detection Using Deep Learning Convolutional Neural Networks, pp. 47–51 (2019). https://doi.org/10.1145/3376067.3376068
Rahman, T., et al.: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 8, 191586–191601 (2020). https://doi.org/10.1109/ACCESS.2020.3031384
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)
Kim, J.-H., Choi, J.-H., Cheon, M., Lee, J.-S.: RAM: residual attention module for single image super-resolution. arXiv preprint arXiv:1811.12043 (2018)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Yeswanth, P.V., Kushal, S., Tyagi, G., Kumar, M.T., Deivalakshmi, S., Ramasubramanian, S.P.: Iterative super resolution network (ISNR) for potato leaf disease detection. In: 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, pp. 1–6 (2023). https://doi.org/10.1109/IConSCEPT57958.2023.10170224
Ahsan, M., Gomes, R., Denton, A.: Application of a convolutional neural network using transfer learning for tuberculosis detection. In: Proceedings of the IEEE International Conference Electro Information Technology (EIT), pp. 427–433, May 2019
Yeswanth, P.V., Khandelwal, R., Deivalakshmi, S.: Two fold extended residual network based super resolution for potato plant leaf disease detection. In: Misra, R., Rajarajan, M., Veeravalli, B., Kesswani, N., Patel, A. (eds.) ICIoTCT 2022. LNCS, vol. 616, pp. 197–209. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-9719-8_16
Yeswanth, P.V., Rajan, J., Mantha, B.P., Siva, P., Deivalakshmi, S.: Self-Governing Assessment Network (SGAN) based super-resolution for CT chest images. In: 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), Srinagar Garhwal, India, pp. 1–5 (2023). https://doi.org/10.1109/IC2E357697.2023.10262573
Acknowledgement
Authors are thankful to the Director of the National Institute of Technology - Tiruchirappalli for granting us permission to use the GPU resources from the Center of Excellence – Artificial Intelligence (CoE-AI) lab.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yeswanth, P.V., Thool, K.V., Deivalakshmi, S. (2023). Tuberculosis Disease Diagnosis Using Controlled Super Resolution. In: Goyal, V., Kumar, N., Bhowmick, S.S., Goyal, P., Goyal, N., Kumar, D. (eds) Big Data and Artificial Intelligence. BDA 2023. Lecture Notes in Computer Science, vol 14418. Springer, Cham. https://doi.org/10.1007/978-3-031-49601-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-49601-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49600-4
Online ISBN: 978-3-031-49601-1
eBook Packages: Computer ScienceComputer Science (R0)