Skip to main content

Ensemble-Based Road Surface Crack Detection: A Comprehensive Approach

  • Conference paper
  • First Online:
Big Data and Artificial Intelligence (BDA 2023)

Abstract

The existence of road surface cracks erodes the structural robustness of the infrastructure and casts shadows of risks for countless motorists and walkers. The timely and efficient detection of road cracks is of utmost importance for maintenance and mitigating further deterioration. Currently, existing techniques to identify cracks entail physical examinations rather than deploying automated image-based techniques, which leads to costly and labor-intensive operations. Incorporating automated crack detection systems is necessary to optimize processes, reduce costs, and enable proactive maintenance efforts to enhance road safety and durability. This paper presents a comprehensive study on road crack detection, aiming to develop an accurate and efficient system to identify cracks on road surfaces. The proposed approach employs a two-phase Convolutional Neural Network (CNN) in conjunction with the Extreme Learning Machine (ELM) by harnessing advanced deep learning techniques. The model showcases outstanding performance in classifying road cracks, as evidenced by thorough experimentation and evaluation on a well-known CCIC dataset. The proposed approach contributes to the advancement of preventive maintenance strategies and the augmentation of road safety measures. The findings highlight the potential of the combined Conv-ELM approach to automate road crack detection, paving the way for improved infrastructure management and streamlined maintenance practices. This research marks a significant advancement in fostering dependable and resilient transportation infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification.

  2. 2.

    https://keras.io/api/layers/activations/#relu-function.

  3. 3.

    https://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html.

  4. 4.

    https://keras.io/api/layers/activations/#softmax-function.

  5. 5.

    https://keras.io/api/layers/activations/#tanh-function.

References

  1. Cao, F., Yang, Z., Ren, J., Chen, W., Han, G., Shen, Y.: Local block multilayer sparse extreme learning machine for effective feature extraction and classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 57(8), 5580–5594 (2019)

    Article  Google Scholar 

  2. Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Trans. Industr. Electron. 65(5), 4392–4400 (2017)

    Article  Google Scholar 

  3. Chen, T., et al.: XGBoost: extreme gradient boosting. R Packag. Vers. 0.4-2 1(4), 1–4 (2015)

    Google Scholar 

  4. Dong, Y., Liu, Q., Du, B., Zhang, L.: Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 31, 1559–1572 (2022)

    Article  Google Scholar 

  5. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  MATH  Google Scholar 

  6. Guo, F., Qian, Y., Liu, J., Yu, H.: Pavement crack detection based on transformer network. Autom. Constr. 145, 104646 (2023)

    Article  Google Scholar 

  7. Gurpinar, F., Kaya, H., Dibeklioglu, H., Salah, A.: Kernel ELM and CNN based facial age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 80–86 (2016)

    Google Scholar 

  8. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  9. Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)

    Article  Google Scholar 

  10. Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3), 155–163 (2010)

    Article  Google Scholar 

  11. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2011)

    Google Scholar 

  12. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  13. Kaur, R., Roul, R.K., Batra, S.: A hybrid deep learning CNN-ELM approach for parking space detection in smart cities. Neural Comput. Appl. 35, 13665–13683 (2023)

    Article  Google Scholar 

  14. Kaur, R., Roul, R.K., Batra, S.: Multilayer extreme learning machine: a systematic review. Multimed. Tools App. 82, 1–39 (2023). https://doi.org/10.1007/s11042-023-14634-4

    Article  Google Scholar 

  15. Kheradmandi, N., Mehranfar, V.: A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Constr. Build. Mater. 321, 126162 (2022)

    Article  Google Scholar 

  16. Kujur, A., Raza, Z., Khan, A.A., Wechtaisong, C.: Data complexity based evaluation of the model dependence of brain MRI images for classification of brain tumor and alzheimer’s disease. IEEE Access 10, 112117–112133 (2022). https://doi.org/10.1109/ACCESS.2022.3216393

    Article  Google Scholar 

  17. Li, H., Zhao, H., Li, H.: Neural-response-based extreme learning machine for image classification. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 539–552 (2018)

    Article  MathSciNet  Google Scholar 

  18. Mei, Q., Gül, M.: A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 256, 119397 (2020)

    Article  Google Scholar 

  19. Murphy, K.P., et al.: Naive Bayes classifiers. Univ. B. C. 18(60), 1–8 (2006)

    Google Scholar 

  20. Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 14(1), 155–168 (2012)

    Article  Google Scholar 

  21. Phalak, P., Bhandari, K., Sharma, R.: Analysis of decision tree-a survey. Int. J. Eng. Res. 3(3), 1–6 (2014)

    Google Scholar 

  22. Roul, R.K.: Detecting spam web pages using multilayer extreme learning machine. Int. J. Big Data Intell. 5(1–2), 49–61 (2018)

    Article  Google Scholar 

  23. Roul, R.K.: Suitability and importance of deep learning feature space in the domain of text categorisation. Int. J. Comput. Intell. Stud. 8(1–2), 73–102 (2019)

    Google Scholar 

  24. Roul, R.K.: Impact of multilayer elm feature mapping technique on supervised and semi-supervised learning algorithms. Soft. Comput. 26(1), 423–437 (2022)

    Article  MathSciNet  Google Scholar 

  25. Roul, R.K., Agarwal, A.: Feature space of deep learning and its importance: comparison of clustering techniques on the extended space of ML-ELM. In: Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation (2017)

    Google Scholar 

  26. Roul, R.K., Asthana, S.R., Kumar, G.: Study on suitability and importance of multilayer extreme learning machine for classification of text data. Soft. Comput. 21(15), 4239–4256 (2017)

    Article  Google Scholar 

  27. Roul, R.K., Bhalla, A., Srivastava, A.: Commonality-rarity score computation: a novel feature selection technique using extended feature space of ELM for text classification. In: Proceedings of the 8th Annual Meeting of the Forum for Information Retrieval Evaluation (2016)

    Google Scholar 

  28. Roul, R.K., Satyanath, G.: A novel feature selection based text classification using multi-layer ELM. In: Roy, P.P., Agarwal, A., Li, T., Krishna Reddy, P., Uday Kiran, R. (eds.) Big Data Analytics. BDA 2022. LNCS, vol. 13773, pp. pp. 33–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24094-2_3

  29. Rujirakul, K., So-In, C.: Histogram equalized deep PCA with ELM classification for expressive face recognition. In: 2018 International Workshop on Advanced Image Technology (IWAIT), pp. 1–4. IEEE (2018)

    Google Scholar 

  30. Satyanath, G., Sahoo, J.K., Roul, R.K.: Smart parking space detection under hazy conditions using convolutional neural networks: a novel approach. Multimed. Tools Appl. 82(10), 15415–15438 (2023)

    Article  Google Scholar 

  31. Suthaharan, S.: Support vector machine. In: Machine Learning Models and Algorithms for Big Data Classification. ISIS, vol. 36, pp. 207–235. Springer, Boston, MA (2016). https://doi.org/10.1007/978-1-4899-7641-3_9

    Chapter  MATH  Google Scholar 

  32. Vishnoi, V.K., Kumar, K., Kumar, B., Mohan, S., Khan, A.A.: Detection of apple plant diseases using leaf images through convolutional neural network. IEEE Access 11, 6594–6609 (2022)

    Article  Google Scholar 

  33. Xiao, S., Shang, K., Lin, K., Wu, Q., Gu, H., Zhang, Z.: Pavement crack detection with hybrid-window attentive vision transformers. Int. J. Appl. Earth Obs. Geoinf. 116, 103172 (2023)

    Google Scholar 

  34. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)

    Article  Google Scholar 

  35. Zakeri, H., Nejad, F.M., Fahimifar, A.: Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Arch. Comput. Methods Eng. 24, 935–977 (2017)

    Article  MATH  Google Scholar 

  36. Zhang, K., Zhang, Y., Cheng, H.D.: CrackGAN: pavement crack detection using partially accurate ground truths based on generative adversarial learning. IEEE Trans. Intell. Transp. Syst. 22(2), 1306–1319 (2020)

    Article  Google Scholar 

  37. Zhang, L., Yang, F., Daniel Zhang, Y., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712 (2016). https://doi.org/10.1109/ICIP.2016.7533052

  38. Zhong, H., Miao, C., Shen, Z., Feng, Y.: Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 128, 285–295 (2014)

    Article  Google Scholar 

  39. Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: Deepcrack: learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Roul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roul, R.K., Navpreet, Sahoo, J.K. (2023). Ensemble-Based Road Surface Crack Detection: A Comprehensive Approach. In: Goyal, V., Kumar, N., Bhowmick, S.S., Goyal, P., Goyal, N., Kumar, D. (eds) Big Data and Artificial Intelligence. BDA 2023. Lecture Notes in Computer Science, vol 14418. Springer, Cham. https://doi.org/10.1007/978-3-031-49601-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49601-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49600-4

  • Online ISBN: 978-3-031-49601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics