Skip to main content

GREAT AI in Medical Appropriateness and Value-Based-Care

  • Conference paper
  • First Online:
Big Data and Artificial Intelligence (BDA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14418))

Included in the following conference series:

  • 345 Accesses

Abstract

Fee For Service, also known as Volume Based Care (VBC) model of healthcare encourages service volume – more service more reward. This model of care results in unnecessary, inappropriate, and wasted medical services. In the US, Fraud, Waste, and Abuse (FWA) ranges between $760 billion to $935 billion, accounting for approximately 25% of total healthcare spending. In India, the waste caused by FWA is estimated to be as high as 35%. This is due to a lack of smart digital health, absence of AI models, and lack of preventive vigilance against inappropriate medical interventions. Inappropriate medical intervention costs valuable resources and causes patient harm. This paper proposes GREAT AI (Generative, Responsible, Explainable, Adaptive, and Trustworthy Artificial Intelligence) in Medical Appropriateness. We show how GREAT AI is used to offer appropriate medical services. Moreover, we show how GREAT AI can function in vigilance role to curb FWA. We present two GREAT AI models namely MAKG (Medical Appropriateness Knowledge Graph) and RAG-GPT (Retrieval Augmented Generation – Generative Pretrained Transformer). MAKG is used as an autonomous coarse-grained medical-inappropriateness vigilance model for payers and regulators. Whereas RAG-GPT is used as a fine-grained LLM, with human-in-the-loop for medical appropriateness and medical inappropriateness model where the actor human-in-the loop can be anybody like providers, patients, payers, regulators, funders, or researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sekhar M.S., Vyas N.: Defensive medicine: a bane to healthcare. Ann Med Health Sci Res. 2013;3(2):295–6 (2013). https://doi.org/10.4103/2141-9248.113688

  2. Shrank, W.H., Rogstad, T.L., Parekh, N.: Waste in the US Health Care System: Estimated Costs and Potential for Savings. JAMA 322(15), 1501–1509 (2019). https://doi.org/10.1001/jama.2019.13978

    Article  Google Scholar 

  3. Kamath, R., Brand, H.: A Critical Analysis of the World’s Largest Publicly Funded Health Insurance Program: India’s Ayushman Bharat. Int. J. Prev. Med. 14, 20 (2023). https://doi.org/10.4103/ijpvm.ijpvm_39_22

    Article  Google Scholar 

  4. Detroit Area Doctor Sentenced to 45 Years in Prison for Providing Medically Unnecessary Chemotherapy to Patients: https://www.justice.gov/opa/pr/detroit-area-doctor-sentenced-45-years-prison-providing-medically-unnecessary-chemotherapy

  5. Noncommunicable Disease: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

  6. Inpatient Prospective Payment System Rule. https://www.facs.org/advocacy/regulatory-issues/payment-rules/inpatient-prospective-payment-system-rule/

  7. Fetter, R.B., Freeman, J.L.: Diagnosis related groups: Product line management within hospitals. Acad. Manag. Rev. 11(1), 41–54 (1986)

    Article  Google Scholar 

  8. Ghosh, A.K., Ibrahim, S., Lee, J., Shapiro, M.F., Ancker, J.: Comparing Hospital Length of Stay Risk-Adjustment Models in US Value-Based Physician Payments. Qual. Manag. Health Care 32(1), 22–29 (2023). https://doi.org/10.1097/QMH.0000000000000363

    Article  Google Scholar 

  9. Sackett, D.L., Rosenberg, W.M., Gray, J.A., Haynes, R.B., Richardson, W.S.: Evidence based medicine: what it is and what it isn’t. ClinOrthopRelat Res. 455, 3–5 (2007)

    Google Scholar 

  10. Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D.M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M, Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D.: Language Models are Few-Shot Learners. (2020). https://arxiv.org/abs/2005.14165

  11. Kung, T.H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., et al.: Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health. 2(2), e0000198 (2023). https://doi.org/10.1371/journal.pdig.0000198

    Article  Google Scholar 

  12. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W., Rocktäschel T., Riedel S., Kiela D.: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. https://arxiv.org/abs/2005.11401 (2020)

  13. Hanlon, J.T., Schmader, K.E.: The Medication Appropriateness Index: A Clinimetric Measure. Psychother. Psychosom. 91(2), 78–83 (2022)

    Article  Google Scholar 

  14. Santos-Eggimann, B., Paccaud, F., Blanc, T.: Medical appropriateness of hospital utilization: an overview of the Swiss experience. Int. J. Qual. Health Care 7(3), 227–232 (1995). https://doi.org/10.1093/intqhc/7.3.227

    Article  Google Scholar 

  15. Lavis J.N., Anderson G.M.: Appropriateness in health care delivery: definitions, measurement, and policy implications. CMAJ. 154(3):321–8. PMID: 8564901 (1996)

    Google Scholar 

  16. Patient Safety in Healthcare, Forecast to 2022. https://store.frost.com/patient-safety-in-healthcare-forecast-to-2022.html

  17. Rasmy, L., Xiang, Y., Xie, Z. et al.: Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. npj Digit. Med. 4:86 (2021). https://doi.org/10.1038/s41746-021-00455-y

  18. Iqbal, M.S., Abd-Alrazaq, A., Househ, M.: Artificial Intelligence Solutions to Detect Fraud in Healthcare Settings: A Scoping Review. Stud Health Technol Inform. 295, 20–23 (2022). https://doi.org/10.3233/SHTI220649

    Article  Google Scholar 

  19. Sun, H., et al.: Medical Knowledge Graph to Enhance Fraud, Waste, and Abuse Detection on Claim Data: Model Development and Performance Evaluation. JMIR Med. Inform. 8(7), e17653 (2020). https://doi.org/10.2196/17653

    Article  Google Scholar 

  20. Talukder, A.K., Selg, E., Fernandez, R., Raj, T.D.S., Waghmare, A.V., Haas, R.E.: Drugomics: Knowledge Graph & AI to Construct Physicians’ Brain Digital Twin to Prevent Drug Side-Effects and Patient Harm. In: Roy, P.P., Agarwal, A., Li, T., Krishna Reddy, P., Uday Kiran, R. (eds) Big Data Analytics. BDA 2022. Lecture Notes in Computer Science, vol 13773. Springer, Cham. ((2022). https://doi.org/10.1007/978-3-031-24094-2_10

  21. Talukder, A.K., Schriml, L., Ghosh, A., Biswas, R., Chakrabarti, P., Haas, R.E.: Diseasomics: Actionable machine interpretable disease knowledge at the point-of-care. PLOS Digit Health. 1(10), e0000128 (2022). https://doi.org/10.1371/journal.pdig.0000128

    Article  Google Scholar 

  22. Talukder, A.K., Selg, E., Haas, R.E.: Physicians’ Brain Digital Twin: Holistic Clinical & Biomedical Knowledge Graphs for Patient Safety and Value-Based Care to Prevent the Post-pandemic Healthcare Ecosystem Crisis. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web. KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21422-6_3

  23. Classen, D.C., Longhurst, C., Thomas, E.J.: Bending the patient safety curve: how much can AI help? npj Digit. Med. 6, 2 (2023). https://doi.org/10.1038/s41746-022-00731-5

    Article  Google Scholar 

  24. Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr. Opin. Behav. Sci.Behav. Sci. 29, 17–23 (2019). https://doi.org/10.1016/j.cobeha.2018.12.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Talukder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, V.D., Ganesh, S., Haas, R.E., Talukder, A.K. (2023). GREAT AI in Medical Appropriateness and Value-Based-Care. In: Goyal, V., Kumar, N., Bhowmick, S.S., Goyal, P., Goyal, N., Kumar, D. (eds) Big Data and Artificial Intelligence. BDA 2023. Lecture Notes in Computer Science, vol 14418. Springer, Cham. https://doi.org/10.1007/978-3-031-49601-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49601-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49600-4

  • Online ISBN: 978-3-031-49601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics