Skip to main content

Multi-Candidate Carpooling Routing Problem and Its Approximation Algorithms

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14461))

  • 245 Accesses

Abstract

Motivated by the carpooling services, we investigate a new and more challenging scenario for carpooling and model it as the Multi-candidate Carpooling Routing Problem (MCRP). The MCRP can be regarded as a new variant of TSP called Generalized Precedence-Constaint Asymmetric Subset Traveling Salesman Path Problem (GPAS-TSPP) and we construct complexity hierarchies for the related problems. We propose a 4-approximation algorithm for its special case Carpooling Routing Problem (CRP), followed by a (\(5+\epsilon \))-approximation algorithm for MCRP on the planar graph. We also design an exact algorithm based on dynamic programming to solve the general MCRP, serving as a benchmark. To the best of our knowledge, we are the first to explore the complexity hierarchy of carpooling problems in the TSP family and give constant-approximation algorithms for these new practical variants.

This work was supported by the National Key R &D Program of China [2020YFB1707900]; the National Natural Science Foundation of China [62272302, 62172276] and Shanghai Municipal Science and Technology Major Project [2021SHZDZX0102], and DiDi GAIA Research Collaboration Plan [202204]. Xiaofeng Gao is the corresponding author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asadpour, A., Goemans, M.X., Ma̧dry, A., Gharan, S.O., Saberi, A.: An \(\rm O (\log n/\log \log n)\)-approximation algorithm for the asymmetric traveling salesman problem. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 379–389 (2010)

    Google Scholar 

  2. Bateni, M., Demaine, E.D., Hajiaghayi, M., Marx, D.: A PTAS for planar group steiner tree via spanner bootstrapping and prize collecting. In: ACM Symposium on Theory of Computing (STOC), pp. 570–583 (2016)

    Google Scholar 

  3. Böckenhauer, H.J., Mömke, T., Steinová, M.: Improved approximations for tsp with simple precedence constraints. J. Discrete Algorithms 21, 32–40 (2013)

    Article  MathSciNet  Google Scholar 

  4. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group steiner trees and k-median. In: ACM Symposium on Theory of Computing (STOC), pp. 114–123 (1998)

    Google Scholar 

  5. Chekuri, C., Pál, M.: An \(\rm O (\log n)\) approximation ratio for the asymmetric traveling salesman path problem. Theory Comput. 3(1), 197–209 (2007)

    Article  MathSciNet  Google Scholar 

  6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Carnegie-Mellon University Pittsburgh Pa Management Sciences Research Group, Technical Report (1976)

    Google Scholar 

  7. Elbassioni, K., Fishkin, A.V., Mustafa, N.H., Sitters, R.: Approximation algorithms for Euclidean group tsp. In: International Colloquium on Automata, Languages and Programming (ICALP), pp. 1115–1126 (2005)

    Google Scholar 

  8. Fatih Tasgetiren, M., Suganthan, P.N., Pan, Q.K.: An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem. Appl. Math. Comput. 215(9), 3356–3368 (2010). https://doi.org/10.1016/j.amc.2009.10.027

    Article  MathSciNet  Google Scholar 

  9. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39 (1982)

    Article  MathSciNet  Google Scholar 

  10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

    Article  MathSciNet  Google Scholar 

  11. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)

    Article  MathSciNet  Google Scholar 

  12. Helsgaun, K.: Solving the equality generalized traveling salesman problem using the Lin–Kernighan–Helsgaun Algorithm. Math. Program. Comput. 7(3), 269–287 (2015). https://doi.org/10.1007/s12532-015-0080-8

    Article  MathSciNet  Google Scholar 

  13. Hoogeveen, J.: Analysis of christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)

    Article  MathSciNet  Google Scholar 

  14. Hu, G., Shao, J., Shen, F., Huang, Z., Shen, H.T.: Unifying multi-source social media data for personalized travel route planning. In: ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp. 893–896 (2017)

    Google Scholar 

  15. Karlin, A.R., Klein, N., Oveis Gharan, S.: A deterministic better-than-3/2 approximation algorithm for metric tsp. In: International Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 261–274 (2023)

    Google Scholar 

  16. Khachai, M.Y., Neznakhina, E.: Approximation schemes for the generalized traveling salesman problem. Proc. Steklov Inst. Math. 299, 97–105 (2017)

    Article  MathSciNet  Google Scholar 

  17. Liu, H., Luo, K., Xu, Y., Zhang, H.: Car-sharing problem: online scheduling with flexible advance bookings. In: Annual International Conference on Combinatorial Optimization and Applications (COCOA), pp. 340–351 (2019)

    Google Scholar 

  18. Schmidt, J., Irnich, S.: New neighborhoods and an iterated local search algorithm for the generalized traveling salesman problem. EURO J. Comput. Optim. 10, 100029 (2022). https://doi.org/10.1016/j.ejco.2022.100029

    Article  MathSciNet  Google Scholar 

  19. Sebo, A., Van Zuylen, A.: The salesman’s improved paths: A 3/2+ 1/34 approximation. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–127 (2016)

    Google Scholar 

  20. Serdyukov, A.I.: Some extremal bypasses in graphs. Diskretnyi Analiz i Issledovanie Operatsii 17, 76–79 (1978)

    MathSciNet  Google Scholar 

  21. Svensson, O., Tarnawski, J., Végh, L.A.: A constant-factor approximation algorithm for the asymmetric traveling salesman problem. J. ACM 67(6), 1–53 (2020)

    Article  MathSciNet  Google Scholar 

  22. Zenklusen, R.: A 1.5-approximation for path TSP. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1539–1549 (2019)

    Google Scholar 

  23. Zheng, T., Jiang, Y.: Driver-rider matching and route optimization in carpooling service for delivering intercity commuters to the high-speed railway station. Expert Syst. Appl. 227, 120231 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiale Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Huang, X., Liu, Z., Gao, X., Chen, G. (2024). Multi-Candidate Carpooling Routing Problem and Its Approximation Algorithms. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14461. Springer, Cham. https://doi.org/10.1007/978-3-031-49611-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49611-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49610-3

  • Online ISBN: 978-3-031-49611-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics