Skip to main content

Faster Algorithms for Evacuation Problems in Networks with a Single Sink of Small Degree and Bounded Capacitated Edges

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14461))

Abstract

In this paper, we propose new algorithms for evacuation problems defined on dynamic flow networks. A dynamic flow network is a directed graph in which source nodes are given supplies (i.e., the number of evacuees) and a single sink node is given a demand (i.e., the maximum number of acceptable evacuees). The evacuation problem seeks a dynamic flow that sends all supplies from sources to the sink such that its demand is satisfied in the minimum feasible time horizon. For this problem, the current best algorithms are developed by Schlöter (2018) and Kamiyama (2019), which run in strongly polynomial time but with high-order polynomial time complexity because they use submodular function minimization as a subroutine. In this paper, we propose new algorithms that do not explicitly execute submodular function minimization, and we prove that they are faster than the current best algorithms when an input network is restricted such that the sink has a small in-degree and every edge has the same capacity.

Supported by JSPS KAKENHI Grant Numbers 19H04068, 20H05794, 22K11910, 23H03349.

The full version of this paper is available at the following link:

https://arxiv.org/abs/2301.06857.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, E.J., Philpott, A.B.: Optimisation of flows in networks over time. In: Kelly, F.P. (ed.) Probability, Statistics and Optimisation, 27, pp. 369–382 (1994)

    Google Scholar 

  2. Bellman, R.E.: On a routing problem. Quarterly Appl. Math. 16, 87–90 (1958)

    Google Scholar 

  3. Busacker, R.G., Gowen, P.J.: A procedure for determining a family of minimum-cost network flow patterns. ORO Tech. 15. Operational Research Office, Johns Hopkins University, Baltimore, 11 (1960)

    Google Scholar 

  4. Edmonds, J.: Submodular functions, matroids and certain polyhedra. Combinatorial Structures and Their Applications, pp. 69–87 (1970)

    Google Scholar 

  5. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985)

    Article  MathSciNet  Google Scholar 

  6. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

    Article  MathSciNet  Google Scholar 

  7. Ford Jr., L.R.: Network flow theory. Paper P-923, The Rand Corporation, Santa Monica 1956

    Google Scholar 

  8. Ford, L.R., Jr., Fulkerson, D.R.: Flows in networks. Princeton Univ. Press, Princeton, NJ (1962)

    Google Scholar 

  9. Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: Proc. 27th Sympos. Algorithms and Compu. (ISAAC), pp. 25:1–25:13 (2016)

    Google Scholar 

  10. Chen, D., Golin, M.: Minmax centered k-partitioning of trees and applications to sink evacuation with dynamic confluent flows. Algorithmica, pp. 1–53 (2022)

    Google Scholar 

  11. Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)

    Article  MathSciNet  Google Scholar 

  12. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in a dynamic tree network with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)

    Article  MathSciNet  Google Scholar 

  13. Higashikawa, Y., Katoh, N., Teruyama, J., Tokuni Y.: Faster Algorithms for Evacuation Problems in Networks with the Single Sink of Small Degree https://arxiv.org/abs/2301.06857 (2023)

  14. Iri, M.: A new method of solving transportation-network problems. Oper. Res. Soc. Japan 3(1) (1960)

    Google Scholar 

  15. Jewell, W.S.: Optimal flow through networks. Operat. Res. 6(4), 633–633 (1958)

    Google Scholar 

  16. Kamiyama, N.: Discrete newton methods for the evacuation problem. Theoret. Comput. Sci. 795, 510–519 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation problem in dynamic network flows with uniform arc capacity. IEICE Trans. Inf. Syst. 89(8), 2372–2379 (2006)

    Article  Google Scholar 

  18. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for the evacuation problem in a certain class of networks with uniform path-lengths. Discret. Appl. Math. 157, 3665–3677 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \(O(n \log ^2 n)\) algorithm for the optimal sink location problem in dynamic tree networks. Discret. Appl. Math. 154(16), 2387–2401 (2006)

    Article  Google Scholar 

  20. Moore, E.F.: The shortest path through a maze. In: Proc. Sympos. Theory of Switching, Part II, pp. 285–292 (1959)

    Google Scholar 

  21. Saho, M., Shigeno, M.: Cancel-and-tighten algorithm for quickest flow problems. Networks 69(2), 179–188 (2017)

    Article  MathSciNet  Google Scholar 

  22. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2), 338–350 (1993)

    Article  MathSciNet  Google Scholar 

  23. Schlöter, M., Skutella, M.: Fast and memory-efficient algorithms for evacuation problems. In: Proc. 28th Annu. ACM Sympos. Discrete Algo. (SODA), pp. 821–840 (2017)

    Google Scholar 

  24. Schlöter, M., Skutella, M., Van Tran, K.: A faster algorithm for quickest transshipments via an extended discrete newton method. In: Proceedings of 2022 Annual ACM Symposium Discrete Algorithm (SODA), pp. 90–102 (2022)

    Google Scholar 

  25. Schlöter, M.: Flows over time and submodular function minimization. Ph.D. thesis, Technische Universität Berlin (2018)

    Google Scholar 

  26. Thorup, M.: Integer priority queues with decrease key in constant time and the single source shortest paths problem. Comput. Syst. Sci. 69(3), 330–353 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Tokuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Higashikawa, Y., Katoh, N., Teruyama, J., Tokuni, Y. (2024). Faster Algorithms for Evacuation Problems in Networks with a Single Sink of Small Degree and Bounded Capacitated Edges. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14461. Springer, Cham. https://doi.org/10.1007/978-3-031-49611-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49611-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49610-3

  • Online ISBN: 978-3-031-49611-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics