Skip to main content

Zero-Visibility Cops and Robber Game on Cage Graph

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14462))

  • 378 Accesses

Abstract

We consider zero-visibility cops and robber game that the cops lack of information on the location of the robber at all times, which is a variant of the classical cops and robbers game. First of all, we use the idea of splitting to study properties of cage graphs. Then we apply properties of cage graphs to investigate the lower bounds of cop number and the monotonic zero-visibility cop number of cage graphs. We also propose a searching algorithm to calculate the monotonic zero-visibility cop number of cage graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4419-7997-1_76

    Chapter  Google Scholar 

  2. Parsons, T.D.: Pursuit-evasion in a Graph. In: Alavi, Y., Lick, D.R. (eds.) the International Conference on Theory and Applications of Graphs 1976, Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer, Heidelberg (1978). https://doi.org/10.10007/BFb0070400

  3. Megiddo, N., HakimiS, L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. Assoc. Comput. Mach. 35(1), 18–44 (1988)

    Article  MathSciNet  Google Scholar 

  4. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput. Sci. 47, 205–218 (1986)

    Article  MathSciNet  Google Scholar 

  5. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math. 43(2–3), 235–239 (1983)

    Article  MathSciNet  Google Scholar 

  6. Quilliot, A.: Problemes de jeux, de point Fixe, de connectivite et de representation sur des graphes, des ensembles ordonnes et des hypergraphes. PhD thesis, Universite de Paris VI (1978)

    Google Scholar 

  7. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs: Student Mathematical Library, American Mathematical Society, Providence, Rhode Island, vol. 61, pp. 191–220 (2011)

    Google Scholar 

  8. Tos̆ić.: Vertex to Vertex Search in a Graph. In: Proceedings of the Sixth Yugoslav Seminar on Graph Theory. University of Novi Sad, pp. 43–56 (1985)

    Google Scholar 

  9. Tang, A.: Cops and Robber with Bounded Visibility. Masters thesis, Dalhousie University (2004)

    Google Scholar 

  10. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops and robber and the pathwidth of a graph. J. Comb. Optim. 29, 541–564 (2015)

    Article  MathSciNet  Google Scholar 

  11. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: The complexity of zero-visibility cops and robber. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 60–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08016-1_6

    Chapter  Google Scholar 

  12. Survey, C.-A.: Pak-Ken Wong. J. Graph Theor. 6, 1–22 (1982)

    Google Scholar 

  13. WIKIPEDIA Homepage. http://en.wikipedia.org/wiki/Cage_(graph_theory). Accessed 4 Oct 2018

  14. Clarke, N.E., Macgillivray, G.: Characterizations of K-copwin Graphs. J. Discrete Math. 312(8), 1421–1425 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Sun .

Editor information

Editors and Affiliations

Appendices

Appendices

Table 1. zero-visibility cop number of Cage graph.
Algorithm 1
figure a

. ZCRSC-Cleaning a cage graph \(G_{r,g}\) in a monotonic manner

Algorithm 2
figure b

. BreakCycle-Cleaning a cage graph \(G_{r,g}\) in a monotonic manner

Algorithm 3
figure c

. IZ-Cleaning a cage graph \(G_{r,g}\) in a monotonic manner

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Zhong, F., Yang, B. (2024). Zero-Visibility Cops and Robber Game on Cage Graph. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics