Abstract
We consider zero-visibility cops and robber game that the cops lack of information on the location of the robber at all times, which is a variant of the classical cops and robbers game. First of all, we use the idea of splitting to study properties of cage graphs. Then we apply properties of cage graphs to investigate the lower bounds of cop number and the monotonic zero-visibility cop number of cage graphs. We also propose a searching algorithm to calculate the monotonic zero-visibility cop number of cage graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4419-7997-1_76
Parsons, T.D.: Pursuit-evasion in a Graph. In: Alavi, Y., Lick, D.R. (eds.) the International Conference on Theory and Applications of Graphs 1976, Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer, Heidelberg (1978). https://doi.org/10.10007/BFb0070400
Megiddo, N., HakimiS, L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. Assoc. Comput. Mach. 35(1), 18–44 (1988)
Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput. Sci. 47, 205–218 (1986)
Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math. 43(2–3), 235–239 (1983)
Quilliot, A.: Problemes de jeux, de point Fixe, de connectivite et de representation sur des graphes, des ensembles ordonnes et des hypergraphes. PhD thesis, Universite de Paris VI (1978)
Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs: Student Mathematical Library, American Mathematical Society, Providence, Rhode Island, vol. 61, pp. 191–220 (2011)
Tos̆ić.: Vertex to Vertex Search in a Graph. In: Proceedings of the Sixth Yugoslav Seminar on Graph Theory. University of Novi Sad, pp. 43–56 (1985)
Tang, A.: Cops and Robber with Bounded Visibility. Masters thesis, Dalhousie University (2004)
Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops and robber and the pathwidth of a graph. J. Comb. Optim. 29, 541–564 (2015)
Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: The complexity of zero-visibility cops and robber. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 60–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08016-1_6
Survey, C.-A.: Pak-Ken Wong. J. Graph Theor. 6, 1–22 (1982)
WIKIPEDIA Homepage. http://en.wikipedia.org/wiki/Cage_(graph_theory). Accessed 4 Oct 2018
Clarke, N.E., Macgillivray, G.: Characterizations of K-copwin Graphs. J. Discrete Math. 312(8), 1421–1425 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, X., Zhong, F., Yang, B. (2024). Zero-Visibility Cops and Robber Game on Cage Graph. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-49614-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49613-4
Online ISBN: 978-3-031-49614-1
eBook Packages: Computer ScienceComputer Science (R0)