Skip to main content

Parameterized and Exact-Exponential Algorithms for the Read-Once Integer Refutation Problem in UTVPI Constraints

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14462))

Abstract

In this paper, we discuss parameterized and exact-exponential algorithms for the read-once integer refutability problem in Unit Two Variable Per Inequality (UTVPI) constraint systems. UTVPI constraint systems (UCSs) arise in a number of domains including operations research, program verification and abstract interpretation. The integer feasibility problem in UCSs is polynomial time solvable and there exist several algorithms for the same. This paper is concerned with refutations of integer feasibility in UCSs. Inasmuch as the integer feasibility problem is in P, there exist polynomial time algorithms to establish unrestricted refutations of integer feasibility. The focus of this paper is on a specific class of refutations called read-once refutations. Previous research has established that the problem of determining the existence of read-once refutations of integer feasibility in UCSs is NP-hard. This paper extends that research by examining the read-once refutability from the parameterized perspective. Using the number of refutation steps in the shortest read-once refutation, we establish fixed-parameter tractability. We also show that no polynomial size kernel exists for this problem. From the exact perspective, we design a non-trivial exponential algorithm.

This research was supported in part by the Defense Advanced Research Projects Agency through grant HR001123S0001-FP-004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric abstractions: improved algorithms and proofs of correctness. Formal Methods Syst. Des. 35(3), 279–323 (2009)

    Article  Google Scholar 

  2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  3. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  4. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  Google Scholar 

  6. Gomory, R.E.: Solving linear programming problems in integers. Combinat. Anal. 10, 211–215 (1960)

    Article  MathSciNet  Google Scholar 

  7. Hochbaum, D., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Math. Program. 62, 63–92 (1993)

    Article  MathSciNet  Google Scholar 

  8. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los Alamitos, CA, USA, June 1995, pp. 29–36. IEEE Computer Society Press (1995)

    Google Scholar 

  9. Büning, H.K., Wojciechowski, P.J., Subramani, K.: Finding read-once resolution refutations in systems of 2CNF clauses. Theor. Comput. Sci. 729, 42–56 (2018)

    Article  MathSciNet  Google Scholar 

  10. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9

    Chapter  Google Scholar 

  11. Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput. 19(1), 31–100 (2006)

    Article  Google Scholar 

  12. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 182–191 (1995)

    Google Scholar 

  13. John Alan Robinson: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  Google Scholar 

  14. Subramani, K.: Optimal length resolution refutations of difference constraint systems. J. Autom. Reas. (JAR) 43(2), 121–137 (2009)

    Article  MathSciNet  Google Scholar 

  15. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certification of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794 (2019)

    Article  MathSciNet  Google Scholar 

  16. Subramani, K., Wojciechowki, P.: Integer feasibility and refutations in UTVPI constraints using bit-scaling. Algorithmica 85, 610–637 (2022)

    Article  MathSciNet  Google Scholar 

  17. Subramani, K., Wojciechowski, P.J.: A bit-scaling algorithm for integer feasibility in UTVPI constraints. In: Combinatorial Algorithms - 27th International Workshop, IWOCA 2016, Helsinki, Finland, 17–19 August 2016, Proceedings, vol. 9843, pp. 321–333 (2016)

    Google Scholar 

  18. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

    Article  MathSciNet  Google Scholar 

  19. Subramani, K., Wojciechowski, P.J.: A certifying algorithm for lattice point feasibility in a system of UTVPI constraints. J. Combinat. Optim. 35(2), 389–408 (2018)

    Article  MathSciNet  Google Scholar 

  20. Subramani, K., Wojciechowski, P.J.: On integer closure in a system of unit two variable per inequality constraints. Ann. Math. Artif. Intell. 88(10), 1101–1118 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26(3), 287–300 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramani, K., Wojciechowski, P. (2024). Parameterized and Exact-Exponential Algorithms for the Read-Once Integer Refutation Problem in UTVPI Constraints. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics