Abstract
An equivalence class in a set is a subset of elements considered equivalent according to some criterion. This concept is applied to different graph parameters, such as neighborhood diversity, twin-cover, twin-width, and modular width. In this work, we introduce a new parameter in graphs called twin-treewidth, which explores the equivalence classes of twins. This parameter generalizes treewidth and neighborhood diversity, two of the most studied parameters in parameterized complexity. We demonstrate the usefulness of this parameter by proposing a simple exponential-time generic procedure to solve problems that can be expressed in a fragment of a variant of Second-Order Monadic Logic.
This research has received funding from Rio de Janeiro Research Support Foundation (FAPERJ) under grant agreements E-26/201.344/2021 and SEI-260003/001674/2021, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), National Council for Scientific and Technological Development (CNPq) under grant agreement 309832/2020-9.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Althaus, E., Ziegler, S.: Optimal tree decompositions revisited: a simpler linear-time FPT algorithm. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 67–78. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0_6
Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theor. Ser. A 14(2), 137–148 (1973)
Biggs, N.L., et al.: Discrete Mathematics. Oxford University Press (2002)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998)
Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)
Courcelle, B.: The monadic second-order logic of graphs iii: tree-decompositions, minors and complexity issues. RAIRO-Theoret. Inf. Appl. 26(3), 257–286 (1992)
Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (2012)
Fomin, F.V., Golovach, P.A., Stamoulis, G., Thilikos, D.M.: An algorithmic meta-theorem for graph modification to planarity and fol. arXiv preprint arXiv:2106.03425 (2021)
Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. Model Theoret. Meth. Finite Comb. 558, 181–206 (2011)
Kreutzer, S.: Algorithmic meta-theorems. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 10–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_3
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical approach. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 520–531. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_47
Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theor. 2(1), 57–81 (1968)
Knop, D., Koutecký, M., Masařík, T., Toufar, T.: Simplified algorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 344–357. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_26
Van Dalen, D.: Logic and Structure, vol. 3. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-02962-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pires, M., Souza, U.S., Lopes, B. (2024). Twin-Treewidth: A Single-Exponential Logic-Based Approach. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49614-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49613-4
Online ISBN: 978-3-031-49614-1
eBook Packages: Computer ScienceComputer Science (R0)