Skip to main content

Twin-Treewidth: A Single-Exponential Logic-Based Approach

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Abstract

An equivalence class in a set is a subset of elements considered equivalent according to some criterion. This concept is applied to different graph parameters, such as neighborhood diversity, twin-cover, twin-width, and modular width. In this work, we introduce a new parameter in graphs called twin-treewidth, which explores the equivalence classes of twins. This parameter generalizes treewidth and neighborhood diversity, two of the most studied parameters in parameterized complexity. We demonstrate the usefulness of this parameter by proposing a simple exponential-time generic procedure to solve problems that can be expressed in a fragment of a variant of Second-Order Monadic Logic.

This research has received funding from Rio de Janeiro Research Support Foundation (FAPERJ) under grant agreements E-26/201.344/2021 and SEI-260003/001674/2021, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), National Council for Scientific and Technological Development (CNPq) under grant agreement 309832/2020-9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Althaus, E., Ziegler, S.: Optimal tree decompositions revisited: a simpler linear-time FPT algorithm. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 67–78. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0_6

    Chapter  Google Scholar 

  2. Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theor. Ser. A 14(2), 137–148 (1973)

    Article  MathSciNet  Google Scholar 

  3. Biggs, N.L., et al.: Discrete Mathematics. Oxford University Press (2002)

    Google Scholar 

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)

    Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs iii: tree-decompositions, minors and complexity issues. RAIRO-Theoret. Inf. Appl. 26(3), 257–286 (1992)

    Article  MathSciNet  Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

  8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (2012)

    Google Scholar 

  10. Fomin, F.V., Golovach, P.A., Stamoulis, G., Thilikos, D.M.: An algorithmic meta-theorem for graph modification to planarity and fol. arXiv preprint arXiv:2106.03425 (2021)

  11. Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. Model Theoret. Meth. Finite Comb. 558, 181–206 (2011)

    Article  MathSciNet  Google Scholar 

  12. Kreutzer, S.: Algorithmic meta-theorems. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 10–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_3

    Chapter  Google Scholar 

  13. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  14. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical approach. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 520–531. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_47

    Chapter  Google Scholar 

  15. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theor. 2(1), 57–81 (1968)

    Article  MathSciNet  Google Scholar 

  16. Knop, D., Koutecký, M., Masařík, T., Toufar, T.: Simplified algorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 344–357. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_26

    Chapter  Google Scholar 

  17. Van Dalen, D.: Logic and Structure, vol. 3. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-02962-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pires, M., Souza, U.S., Lopes, B. (2024). Twin-Treewidth: A Single-Exponential Logic-Based Approach. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics