Skip to main content

The Fine-Grained Complexity of Approximately Counting Proper Connected Colorings (Extended Abstract)

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Abstract

A k-proper connected 2-coloring for a graph is an edge bipartition which ensures the existence of at least k vertex disjoint simple alternating paths (i.e., paths where no two adjacent edges belong to the same partition) between all pairs of vertices. In this work, for every \(k \in \mathbb {N}_{>0}\), we show that exactly counting such colorings is \(\#P\)-hard under many-one counting reductions, as well as \(\#P\)-complete under many-one counting reductions for \(k=1\). Furthermore, for every \(k \in \mathbb {N}_{>0}\), we rule out the existence of a \(2^{o\left( \frac{n}{k^2}\right) }\) time algorithm for finding a k-proper connected 2-coloring of an order n graph under the ETH, or for exactly counting such colorings assuming the moderated Counting Exponential Time Hypothesis (#ETH) of (Dell et al.; ACM Trans. Algorithms 10(4); 2014). Finally, assuming the Exponential Time Hypothesis (ETH), and as a consequence of a recent result of (Dell & Lapinskas; ACM Trans. Comput. Theory 13(2); 2021), for every \(k \in \mathbb {N}_{>0}\) and every \(\epsilon > 0\), we are able to rule out the existence of a \(2^{o\left( \frac{n}{k^2}\right) }/\epsilon ^2\) time algorithm for approximating the number of k-proper connected 2-colorings of an order n graph within a multiplicative factor of \(1 + \epsilon \).

This work was supported by JSPS Kakenhi grants {20K21827, 20H05967, 21H04871}, and JST CREST Grant JPMJCR1402JST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We became aware of Huang & Li’s result [23, 24] only after completing an earlier draft of the proof for Theorem 1 of the current work, which, despite being a counting complexity result, yields an independent proof that deciding the existence of a 1-proper connected 2-coloring is NP-complete. We additionally remark that the proof strategy of Huang & Li [23, 24] requires the construction of a complete graph on \(2n + m + 1\) vertices, where n and m correspond to the number of variables and clauses, respectively, in an input NAE-3-SAT instance. Accordingly, this only allows for the exclusion of a \(2^{o\left( \sqrt{n}\right) }\) time algorithm for finding a 1-proper connected 2-coloring under the ETH.

References

  1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1), 79–129 (2007)

    Article  MathSciNet  Google Scholar 

  2. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R.: Paths and trails in edge-colored graphs. Theoret. Comput. Sci. 409(3), 497–510 (2008)

    Article  MathSciNet  Google Scholar 

  3. Andrews, E., Lumduanhom, C., Laforge, E., Zhang, P.: On proper-path colorings in graphs. J. Comb. Math. Comb. Comput. 97, 189–207 (2016)

    MathSciNet  Google Scholar 

  4. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Math. 165(166), 39–60 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bang-Jensen, J., Gutin, G.: Alternating cycles and trails in 2-edge-coloured complete multigraphs. Discrete Math. 188(1–3), 61–72 (1998)

    Article  MathSciNet  Google Scholar 

  6. Baran, P.: The beginnings of packet switching: some underlying concepts. IEEE Commun. Mag. 40(7), 42–48 (2002)

    Article  Google Scholar 

  7. Barish, R.D.: On the Number of k-Proper Connected Edge and Vertex Colorings of Graphs. Accepted for publication in Thai J, Math (2023)

    Google Scholar 

  8. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan Press: New York, NY, 1st edn. (1976)

    Google Scholar 

  9. Borozan, V., et al.: Proper connection of graphs. Discrete Math. 312(17), 2550–2560 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133(1), 85–98 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: The rainbow connectivity of a graph. Networks 54(2), 75–81 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chou, W.S., Manoussakis, Y., Megalakaki, O., Spyratos, M., Tuza, Z.: Paths through fixed vertices in edge-colored graphs. Mathématiques et Sciences Humaines 127, 49–58 (1994)

    MathSciNet  Google Scholar 

  13. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms 10(4), 21:1–21:32 (2014)

    Google Scholar 

  14. Dell, H., Lapinskas, J.: Fine-grained reductions from approximate counting to decision. ACM Trans. Comput. Theory 13(2), 8:1–8:24 (2021)

    Google Scholar 

  15. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  Google Scholar 

  16. Ducoffe, G., Marinescu-Ghemeci, R., Popa, A.: On the (di)graphs with (directed) proper connection number two. Discrete Appl. Math. 281, 203–215 (2020)

    Article  MathSciNet  Google Scholar 

  17. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  Google Scholar 

  18. Gerek, A., Fujita, S., Magnant, C.: Proper connection with many colors. J. Comb. 3(4), 683–693 (2012)

    MathSciNet  Google Scholar 

  19. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform. Comput. 206(7), 908–929 (2008)

    Article  MathSciNet  Google Scholar 

  20. Gu, R., Li, X., Qin, Z.: Proper connection number of random graphs. Theoret. Comput. Sci. 609, 336–343 (2016)

    Article  MathSciNet  Google Scholar 

  21. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  22. Huang, F., Li, X., Qin, Z., Magnant, C.: Minimum degree condition for proper connection number 2. Theoret. Comput. Sci. 774, 44–50 (2019)

    Article  MathSciNet  Google Scholar 

  23. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs, pp. 1–23 (2020). arxiv.org/abs/2001.01948

  24. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs. Theoret. Comput. Sci. 841, 27–38 (2020)

    Article  MathSciNet  Google Scholar 

  25. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  26. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  27. Jerrum, M.: Counting, sampling and integrating: algorithms and complexity. Lectures in Mathematics, ETH Zuerich, Birkhauser Verlag, Basel, Switzerland (2013)

    Google Scholar 

  28. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci. 43(2–3), 169–188 (1986)

    Article  MathSciNet  Google Scholar 

  29. Li, X., Magnant, C.: Properly colored notions of connectivity - a dynamic survey. Theory Appl. Graphs 0(1), 1–16 (2015)

    Google Scholar 

  30. Liśkiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoret. Comput. Sci. 304(1–3), 129–156 (2003)

    Article  MathSciNet  Google Scholar 

  31. Lumduanhom, C., Laforge, E., Zhang, P.: Characterizations of graphs having large proper connection numbers. Discuss. Math. Graph Theory 36(2), 439–453 (2016)

    Article  MathSciNet  Google Scholar 

  32. Manoussakis, Y.: Alternating paths in edge-colored complete graphs. Discret. Appl. Math. 56(2–3), 297–309 (1995)

    Article  MathSciNet  Google Scholar 

  33. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    Article  Google Scholar 

  34. Micali, S., Vazirani, V.V.: An \(\cal{O}\left(\sqrt{|{V}|} \cdot |{E}|\right)\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS), pp. 17–27 (1980)

    Google Scholar 

  35. Mulder, H.M.: Julius Petersen’s theory of regular graphs. Discrete Math. 100(1–3), 157–175 (1992)

    Article  MathSciNet  Google Scholar 

  36. Petersen, J.: Die theorie der regulären graphs. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  37. Roberts, L.G.: Multiple computer networks and intercomputer communication. In: Proceedings of the 1st ACM Symposium on Operating System Principles (SOSP), pp. 3.1-3.6 (1967)

    Google Scholar 

  38. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl. Math. 126(2–3), 261–273 (2003)

    Article  MathSciNet  Google Scholar 

  39. Tutte, W.T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)

    Article  Google Scholar 

  40. Tutte, W.T.: The method of alternating paths. Combinatorica 2(3), 325–332 (1982)

    Article  MathSciNet  Google Scholar 

  41. de Werra, D., Gay, Y.: Chromatic scheduling and frequency assignment. Discrete Appl. Math. 49(1–3), 165–174 (1994)

    Article  MathSciNet  Google Scholar 

  42. Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Comb. Theory, Ser. B 69(2), 222–225 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Barish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barish, R.D., Shibuya, T. (2024). The Fine-Grained Complexity of Approximately Counting Proper Connected Colorings (Extended Abstract). In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics