Skip to main content

The Power of Amortization on Scheduling with Explorable Uncertainty

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2023)

Abstract

In this work, we study a scheduling problem with explorable uncertainty. Each job comes with an upper limit of its processing time, which could be potentially reduced by testing the job, which also takes time. The objective is to schedule all jobs on a single machine with a minimum total completion time. The challenge lies in deciding which jobs to test and the order of testing/processing jobs.

The online problem was first introduced with unit testing time [5, 6] and later generalized to variable testing times [1]. For this general setting, the upper bounds of the competitive ratio are shown to be 4 and 3.3794 for deterministic and randomized online algorithms [1]; while the lower bounds for unit testing time stands [5, 6], which are 1.8546 (deterministic) and 1.6257 (randomized).

We continue the study on variable testing times setting. We first enhance the analysis framework in [1] and improve the competitive ratio of the deterministic algorithm in [1] from 4 to \(1+\sqrt{2} \approx 2.4143\). Using the new analysis framework, we propose a new deterministic algorithm that further improves the competitive ratio to 2.316513. The new framework also enables us to develop a randomized algorithm improving the expected competitive ratio from 3.3794 to 2.152271.

P. W. H. Wong—The work is partially supported by University of Liverpool Covid Recovery Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Eckl, A.: Explorable uncertainty in scheduling with non-uniform testing times. In: Kaklamanis, C., Levin, A. (eds.) WAOA 2020. LNCS, vol. 12806, pp. 127–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80879-2_9

    Chapter  Google Scholar 

  2. Cardoso, J.M.P., Diniz, P.C., Coutinho, J.G.F.: Embedded Computing for High Performance: Efficient Mapping of Computations Using Customization, Code Transformations and Compilation. Morgan Kaufmann Publishers, Burlington (2017)

    Google Scholar 

  3. Caruso, S., Galatà, G., Maratea, M., Mochi, M., Porro, I.: Scheduling pre-operative assessment clinic via answer set programming. In: Benedictis, R.D., et al. (eds.) Proceedings of the 9th Italian workshop on Planning and Scheduling (IPS’21) and the 28th International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (RCRA 2021) with CEUR-WS co-located with 20th International Conference of the Italian Association for Artificial Intelligence (AIxIA 2021), Milan, Italy (virtual), 29th–30th November 2021. CEUR Workshop Proceedings, vol. 3065. CEUR-WS.org (2021). https://ceur-ws.org/Vol-3065/paper3_196.pdf

  4. Ding, B., Feng, Y., Ho, C., Tang, W., Xu, H.: Competitive information design for pandora’s box. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, 22–25 January 2023, pp. 353–381. SIAM (2023). https://doi.org/10.1137/1.9781611977554.ch15

  5. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncertainty. In: Karlin, A.R. (ed.) 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, 11–14 January 2018, Cambridge, MA, USA. LIPIcs, vol. 94, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.30

  6. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for scheduling with testing. Algorithmica 82(12), 3630–3675 (2020). https://doi.org/10.1007/s00453-020-00742-2

    Article  MathSciNet  Google Scholar 

  7. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with uncertainty. Bull. EATCS 116 (2015). http://eatcs.org/beatcs/index.php/beatcs/article/view/335

  8. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheapest set problems under uncertainty. Theor. Comput. Sci. 613, 51–64 (2016). https://doi.org/10.1016/j.tcs.2015.11.025

    Article  MathSciNet  Google Scholar 

  9. Esfandiari, H., Hajiaghayi, M.T., Lucier, B., Mitzenmacher, M.: Online pandora’s boxes and bandits. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 1885–1892. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33011885

  10. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing shortest paths with uncertainty. J. Algorithms 62(1), 1–18 (2007). https://doi.org/10.1016/j.jalgor.2004.07.005

    Article  MathSciNet  Google Scholar 

  11. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty. In: Yao, F.F., Luks, E.M. (eds.) Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, 21–23 May 2000, Portland, OR, USA, pp. 602–607. ACM (2000). https://doi.org/10.1145/335305.335386

  12. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related problems. Theory Comput. Syst. 59(1), 112–132 (2016). https://doi.org/10.1007/s00224-015-9664-y

    Article  MathSciNet  Google Scholar 

  13. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty. Theor. Comput. Sci. 867, 50–67 (2021). https://doi.org/10.1016/j.tcs.2021.03.021

    Article  MathSciNet  Google Scholar 

  14. Hoffmann, M., Erlebach, T., Krizanc, D., Mihalák, M., Raman, R.: Computing minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) STACS 2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France, 21–23 February 2008, Proceedings. LIPIcs, vol. 1, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2008). https://doi.org/10.4230/LIPIcs.STACS.2008.1358

  15. Kahan, S.: A model for data in motion. In: Koutsougeras, C., Vitter, J.S. (eds.) Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 5–8 May 1991, New Orleans, Louisiana, USA, pp. 267–277. ACM (1991). https://doi.org/10.1145/103418.103449

  16. Lopes, J., Vieira, G., Veloso, R., Ferreira, S., Salazar, M., Santos, M.F.: Optimization of surgery scheduling problems based on prescriptive analytics. In: Gusikhin, O., Hammoudi, S., Cuzzocrea, A. (eds.) Proceedings of the 12th International Conference on Data Science, Technology and Applications, DATA 2023, Rome, Italy, 11–13 July 2023, pp. 474–479. SCITEPRESS (2023). https://doi.org/10.5220/0012131700003541

  17. Nicolai, R.P., Dekker, R.: Optimal Maintenance of Multi-component Systems: A Review, pp. 263–286 (2008)

    Google Scholar 

  18. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation queries over replicated data. In: Abbadi, A.E., et al. (eds.) VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, 10–14 September 2000, Cairo, Egypt, pp. 144–155. Morgan Kaufmann (2000). http://www.vldb.org/conf/2000/P144.pdf

  19. Weitzman, M.L.: Optimal search for the best alternative. Econometrica 47(3), 641–654 (1979). http://www.jstor.org/stable/1910412

  20. Wiseman, Y., Schwan, K., Widener, P.M.: Efficient end to end data exchange using configurable compression. ACM SIGOPS Oper. Syst. Rev. 39(3), 4–23 (2005). https://doi.org/10.1145/1075395.1075396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Hsiang-Hsuan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, A.HH., Liu, FH., Wong, P.W.H., Zhang, XO. (2023). The Power of Amortization on Scheduling with Explorable Uncertainty. In: Byrka, J., Wiese, A. (eds) Approximation and Online Algorithms . WAOA 2023. Lecture Notes in Computer Science, vol 14297. Springer, Cham. https://doi.org/10.1007/978-3-031-49815-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49815-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49814-5

  • Online ISBN: 978-3-031-49815-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics